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Abstract 

This paper examines the determinants of cross-sectional and lifecycle inequality using a lifecycle 

earnings process model that incorporates earnings mobility and non-employment risks across birth 

cohorts and over time. We show that changes in unobserved skill prices and the variance of individual 

fixed effects across cohorts are the primary drivers of inequality. While non-employment risk 

contributes little to cross-sectional inequality, it is central to explaining lifecycle inequality. To explain 

the increase in the variance of fixed effects, we interpret these within a Roy model as realized 

productivity, influenced by both ability and task choice. We provide evidence that technological 

change can amplify inequality beyond the canonical skill price channel by strengthening the mapping 

from ability to productivity through within-occupational task sorting. 
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1. Introduction 

Most research on wage and earnings inequality focuses on cross-sectional inequality (e.g., 

Katz and Murphy, 1992; Card and DiNardo, 2002; Lemieux, 2006; Goldin and Katz, 

2007; Dustmann et al., 2009; Moretti, 2013). However, welfare implications depend on 

the underlying earnings dynamics, as high cross-sectional inequality could reflect rapid 

earnings growth and temporary wage fluctuations or stem from persistent disparities 

starting at labor market entry, resulting in low or high lifecycle inequality, respectively. 

Although income process models have been widely used to study earnings dynamics, 

research linking and understanding the determinants of cross-sectional and lifecycle 

inequality is limited. While research incorporating non-stationary shocks into earnings 

dynamics often focuses on age- or year-dependent variations (e.g., Haider, 2001; Baker 

and Solon, 2003; Moffitt and Gottschalk, 2012; Debacker et al., 2013; Blundell et al., 

2015), it rarely considers heteroskedasticity in permanent wage shocks across cohorts, 

thus limiting our understanding of how lifecycle inequality evolves.2 Moreover, cross-

sectional wage measures often overlook the elevated non-employment risks low-wage 

workers face.  

This paper makes two key contributions. First, it analyzes both cross-sectional 

wage and lifecycle earnings inequality across labor market entry cohorts in Germany, 

disentangling and quantifying the relative contributions of the underlying mechanisms 

driving each. We estimate a lifecycle earnings process model that decomposes overall 

inequality into structural components. The model integrates elements from Baker and 

Solon (2003), Guvenen (2009), and Guvenen et al. (2021) into a unified income process 

that allows for both cohort- and time-specific heterogeneity as well as employment–non-

employment dynamics. Beyond observable factors such as the composition and returns 

to education, experience, and time effects, we separate the standard unobserved individual 

fixed effect into a cohort-specific individual productivity component and a time-varying 

price component. We further estimate an employment–non-employment transition 

process to capture the correlation between wages and job insecurity, which we 

 

2 Another strand of research relies on models with stationary shocks (e.g., Lillard and Willis, 1978; 

Lillard and Weiss, 1979; MaCurdy, 1982; Meghir and Pistaferri, 2004; Guvenen, 2009).  
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demonstrate is central to understanding lifecycle earnings inequality, but less so for cross-

sectional inequality. Thus, we model changes in unobservable wage components through 

an income process that allows for multiple sources of non-stationarity in wage shocks and 

non-employment risks across birth cohorts and over time. Based on this framework, we 

decompose the evolution of lifecycle and cross-sectional inequality into their constituent 

components, enabling a direct comparison of the mechanisms underlying each. These 

decompositions show that both the price and the variance of unobserved individual 

productivity are key drivers of the rise in both lifecycle and cross-sectional wage 

inequality.  

This leads to the second main contribution of the paper: we provide an economic 

interpretation of the increase in the variance of unobserved individual productivity across 

cohorts within an extended Roy framework. Earlier work typically interprets this variance 

as reflecting fixed differences in innate ability and, accordingly, treats it as constant over 

time, implying that observed increases in inequality must stem from changing skill 

prices. We show instead that the variance can evolve endogenously as workers adjust their 

task choices in response to technological change. In our model, technological change not 

only raises the returns to complex tasks (as in Acemoglu and Autor, 2011) but also induces 

individuals to sort into these tasks within occupations. This endogenous sorting amplifies 

the cohort-specific variance of the unobserved productivity component. We provide 

empirical evidence consistent with this mechanism. 

Our paper begins with a descriptive analysis using German administrative data 

from 1975 to 2019, showing that cross-sectional inequality in Germany expanded from 

the late 1980s but plateaued after the Great Recession (see also Dustmann et al., 2025). 

Consistent with evidence for the US (Guvenen et al, 2022), we also find that wage 

inequality at age 25 follows a similar trend to cross-sectional inequality and that wage 

mobility decreases for later cohorts. These results suggest that significant inequality arises 

early in workers' careers and tends to persist throughout their working lives. Furthermore, 

lifecycle earnings inequality for birth cohorts from 1950 to 1985, defined as total labor 

earnings between ages 25 and 34, increased by more than 25 percent up to the 1975 cohort 

but declined by about 5 percent for cohorts born between 1975 and 1985. 

We then turn to our model of the wage and employment process to examine the 
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mechanisms driving the evolution of cross-sectional and lifecycle inequality. We 

document a substantial rise in the variance of the unobserved fixed effect. Between the 

1955 and 1994 birth cohorts, this variance nearly doubled and primarily explains the 

evolution of cross-sectional and lifecycle inequality. Decomposing the fixed effect into a 

cohort-specific productivity component and its time-varying price, we show that this 

increase is explained about equally by both components.  

Our model also replicates the recent plateau in cross-sectional inequality, which 

is attributed to a reduction in the magnitude of persistent wage shocks. Meanwhile, 

transitory wage shocks play a minor role in shaping cross-sectional and lifecycle 

inequality, although the magnitude of transitory shocks temporarily increased around the 

Great Recession.  

We further investigate the effect of non-employment risk on cross-sectional 

inequality. While the non-employed are excluded from such analysis, selection could still 

lead to non-employment influencing cross-sectional inequality. We show that, although 

such selection is present, and non-employment has changed substantially over our study 

period, its magnitude is too small to affect cross-sectional inequality meaningfully. This 

suggests that in studies of wage inequality relying solely on cross-sectional data, selection 

into non-employment is unlikely to be a concern. The employment margin is, however, 

crucial for lifecycle earnings, given that low-wage earners experience greater job 

instability and non-employment is persistent over time. Our findings reveal that the 

decline in lifecycle inequality after the 1975 birth cohort is primarily driven by shorter 

and less frequent non-employment spells in recent years.3   

Earnings mobility provides the link between cross-sectional and lifecycle 

inequality. Examining its evolution, we find a decline beginning with the 1966 birth 

cohort, which stabilizes after the 1975 cohort. This decline is primarily driven by the 

sharp rise in the variance of individual fixed effects, both in the unobserved individual 

productivity component and its price. By contrast, changes in the returns to and 

composition of observables had only a modest positive effect on mobility after the 1975 

 

3 This is consistent with Boenke et al. (2015a), who highlight the significance of non-employment in 

shaping lifecycle inequality through Gini coefficient analysis. 
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cohort, partially offsetting the adverse impact of rising variance in fixed effects. 

A key finding of our analysis is that the rise in the variance of individual fixed 

effects is driven not only by the growing dispersion of unobserved skill prices—

commonly cited as the main explanation in earlier work (e.g., Juhn et al., 1993)—but also 

by an increase in the variance of the unobserved productivity component. This component 

is often interpreted as ability or talent, yet it is implausible that successive cohorts 

experienced such large shifts in the distribution of innate ability. To provide an economic 

interpretation of this pattern, we first show that the increase in the variance of fixed effects 

arises predominantly within occupations, with roughly three-quarters of the total increase 

explained by within-occupation variation. We then develop a Roy model of task choice 

within occupations under skill-biased technological change. In this framework, the 

individual productivity component captures realized productivity—jointly determined by 

innate ability and task choice—rather than innate ability alone. Consequently, 

technological change can raise the variance of individual productivity through sorting, 

even when the underlying distribution of talent remains stable. 

The key idea is as follows. Within occupations, workers choose between routine 

and complex tasks. Because ability translates more strongly into productivity in complex 

tasks4, technological change—by raising the return to complex relative to routine tasks—

draws a growing share of workers into complex tasks. This reallocation amplifies 

inequality. The mechanism complements the canonical model of technological change, 

where inequality rises through higher relative prices of complex tasks (e.g., Acemoglu 

and Autor, 2011), by providing an explanation for why technological change also 

increases the variance of unobserved productivity. Our framework thus accounts for the 

rising variance in workers’ unobserved productivity without requiring changes in the 

underlying distribution of ability. 

To test our model, we treat occupations as labor market units comprising routine 

and complex subsectors, with the relative size of the complex subsector varying across 

occupations. This focus is motivated by the observation that roughly two-thirds of the 

 

4 Cortes (2016) uses a similar mechanism to explain between-occupational employment 

polarization. 
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increase in the variance of unobserved individual heterogeneity—measured as residual 

wages net of observable components—occurs within occupations. The model generates 

three testable predictions. First, workers performing more complex tasks should earn 

higher wages than peers performing less complex tasks. Second, inequality should rise 

more in occupations where the share of complex tasks has expanded more strongly. Third, 

conditional on initial complexity, the effect of worker sorting on inequality should be 

largest in occupations with either low or high initial complexity and smaller in those with 

moderate complexity. 

We test these predictions using task-complexity data from the 1986 and 2006 

BIBB/IAB surveys. The estimates confirm the model’s implications: within occupations, 

greater task complexity is associated with significantly higher wages, even after 

controlling for experience, gender, and managerial status. Moreover, occupations that 

experienced larger increases in average task complexity show greater growth in within-

occupational wage dispersion, and consistent with the model’s non-monotonic sorting 

mechanism, this relationship follows a U-shaped pattern with respect to initial complexity. 

We contribute to the literature in different ways. . First, we jointly analyze cross-

sectional wage and lifecycle earnings inequality through the lens of a lifecycle earnings 

model. Building on the longstanding literature that uses income process models to 

decompose sources of lifecycle inequality (MaCurdy, 1982; Abowd and Card, 1989; 

Moffitt and Gottschalk, 1995; Meghir and Pistaferri, 2004), we incorporate both time- 

and cohort-specific forms of non-stationarity in a joint model of wages and employment.5 

Explicitly modeling the employment margin distinguishes our approach from much of the 

prior literature, which abstracts from employment–non-employment transitions—either 

by focusing on workers for whom non-employment is less relevant (e.g., Guvenen, 2009) 

or by modeling earnings, thereby implicitly absorbing non-employment into earnings 

shocks (e.g., Haider, 2001; DeBacker et al., 2013; Blundell et al., 2015).6 Our approach, 

 

5 While Baker and Solon (2003) and Boenke et al. (2015b) also distinguish between cohort and time 

dimensions, their specifications and interpretations differ substantially and address distinct research 

questions. 

6 An exception is Guvenen et al. (2021), who develop a rich model that accounts for non-
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therefore, allows us to quantify the relative contributions of different sources to the 

evolution of cross-sectional and lifecycle inequality, as well as wage mobility. 

Our second contribution is to reinterpret the role of the individual fixed effect in 

the wage process model and to link it to the literature on technological change. The 

productivity component, i.e., the fixed effect net of prices, is typically viewed as capturing 

individual ability with a time-invariant distribution.7 This interpretation contrasts with 

our finding that the variance of individual fixed effects changes systematically across 

cohorts. We propose that the productivity component reflects realized productivity, 

shaped by workers’ task choices within occupations. As technological change alters task 

incentives, these choices increase the variance of realized productivity, while the 

underlying ability distribution remains constant, thereby amplifying inequality beyond 

the canonical skill-price channel (Katz and Murphy, 1992). 

Lastly, our study contributes to the literature on German income inequality by 

providing new evidence on the sources of the evolution of lifecycle inequality across 

cohorts. Most existing research focuses on cross-sectional wage inequality (e.g., 

Dustmann et al., 2009; Card et al., 2013; Goldschmidt and Schmieder, 2017; Biewen et 

al. 2018; Biewen et al., 2019; Drechsel-Grau et al., 2022; Bossler and Schank, 2023; 

Dustmann et al., 2025). A few exceptions focus on Gini coefficients but do not quantify 

 

employment risk, but their framework does not address cohort differences in inequality. 

7 Cortes and Hidalgo-Pérez (2015) also allow the variance of the individual component to change 

across cohorts. They model the unobserved component as a time-invariant latent ability, delegating 

all other dynamics—such as lifecycle skill accumulation, permanent shocks, and task reallocations—

to the residual. In principle, if their identification holds exactly, the fixed effect isolates only entry-

level heterogeneity, while all persistent changes are treated as noise. In practice, however, their 

short-panel design (two waves) risks conflating permanent endowments with unmodeled dynamics. 

Lochner, Park, and Shin (2018, 2025), using the PSID, find that the variance of initial ability is 

essentially stable over time, and that rising dispersion reflects heterogeneous and persistent shocks to 

skill growth over the lifecycle. They interpret the unobserved component as a latent skill stock—

initial ability augmented by heterogeneous growth shocks—whose rising variance reflects increasing 

dispersion in skill accumulation. 
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the contribution of stochastic wage determinants to lifecycle inequality (Boenke et al. 

2015a), or estimate a lifecycle wage model does not consider employment-non-

employment transitions (Boenke et al. 2015b). Our study jointly models the stochastic 

wage process and employment-non-employment transitions to disentangle the sources of 

the evolution of lifecycle inequality in the German context. 

The remainder of this paper is structured as follows: Section 2 describes the data, 

and Section 3 shows our wage and employment process model. Section 4 discusses the 

estimation results and counterfactual simulation results. Section 5 demonstrates the 

economic model to interpret the estimation results. Section 6 concludes this study. 

2. Data and descriptive analysis 

2.1. Data 

Our analysis uses administrative data for Germany from the Sample of Integrated Labour 

Market Biographies (SIAB) from 1975 to 2019. 8 The SIAB is a 2% random sample of 

the Integrated Employment Biographies (IEB), which contain detailed employment 

records for individuals covered by social security and records of unemployment benefit 

receipts. This dataset enables us to track individual employment histories across the entire 

1975–2019 period. In addition to daily wages and employment duration, the data provides 

rich information on workers and jobs, including age, gender, educational attainment, 

occupation, industry, and workplace characteristics (see Frodermann et al., 2021, for 

further details). Dating back to 1975, it enables us to analyze wage inequality over 45 

years. Since the SIAB is based on administrative records, daily wages are measured with 

high precision. This is crucial because measurement errors in wages can complicate the 

estimation of wage process models (see Bound and Krueger, 1991; Meghir and Pistaferri, 

2011).  

While the SIAB does not cover self-employed individuals, family workers, or 

civil servants, it represents about 85 percent of employment in 2019 (DESTATIS, 2023). 

 

8 Data access was provided via a Scientific Use File supplied by the Research Data Centre (FDZ) of 

the German Federal Employment Agency (BA) at the Institute for Employment Research (IAB). 
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Wages in the SIAB are top-coded at the upper limit of social security contributions. To 

address this, we apply a two-step imputation method, following the approaches of Gartner 

(2005), Dustmann et al. (2009), Card et al. (2013), and Dauth and Eppelsheimer (2020). 

When estimating the wage process model, we focus on males to avoid 

complications arising from voluntary labor force participation choices and variations in 

hours worked. We also exclude East Germans, as records are unavailable before 1991.9 

We restrict the sample to individuals aged 25 to 59 to focus on prime-age workers.10 Since 

the SIAB does not contain detailed data on hours worked, only indicators for full-time, 

part-time, or marginal employment are available. Therefore, we limit the sample to full-

time employment records to ensure that daily wages accurately reflect full-time work. 

Specifically, we exclude individuals who held part-time or marginal jobs between the 

ages of 25 and 59. Since most prime-age men work full-time, our results are not sensitive 

to this restriction and remain essentially unchanged when part-time workers are included 

in the analysis sample. Additionally, we exclude individuals who had not completed their 

apprenticeship or university studies or were not employed by age 25 (the starting point of 

our lifecycle definition). To address data quality concerns, we also drop the top 2% of 

wages to eliminate unrealistic imputed values and the bottom 2% to account for the 

potential misclassification of part-time employment as full-time (Fitzenberger and 

Seidlitz, 2020).11 

Our analysis uses two measures of labor income: wages and lifecycle earnings. 

Wages are calculated as the total wages earned in full-time employment within a calendar 

year, divided by the total number of days spent in full-time employment during that year.12 

 

9 Since birthplace information is unavailable in our data, we follow Boelmann et al. (forthcoming) 

and classify workers as West German if their first recorded workplace in the dataset is located in 

West Germany. 

10 Our target population is similar to Baker and Solon (2003), who analyze men between 25 and 58. 

11 The wage refers to the annual average wage defined below. 

12 In calculating wages, we assign zero weight to non-employment spells. Following Stueber et al. 

(2023), we allocate separately recorded one-time payments to the corresponding regular employment 

spells with the same employer within the same calendar year. If a worker holds multiple jobs 

simultaneously, we consider only the job with the highest daily wage. 
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While wages are helpful in analyzing the wage distribution within a given year, such as 

cross-sectional wage inequality, they provide limited insight into earnings over the 

lifecycle. Therefore, we measure lifecycle earnings as the total labor earnings 

accumulated between ages 25 and 34,  

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 =  ∑ 𝑌𝑒𝑎𝑟𝑙𝑦 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝐴𝑔𝑒

34

𝐴𝑔𝑒=25

 

Although our definition of “lifecycle earnings” does not capture all earnings between ages 

25 and 59, we focus on these ten years to extend our analysis to recent cohorts. As 

Guvenen (2022) emphasizes, most wage growth occurs during the first ten years (see also 

Topel and Ward, 1992); in fact, we demonstrate in Section 2.2 that this period is a valid 

proxy for lifecycle earnings.13 

This approach allows us to compute lifecycle inequality for cohorts born between 

1950 and 1985. To ensure comparability, we calculate cross-sectional inequality also for 

workers aged 25 to 34 unless otherwise specified. For the lifecycle inequality analysis, 

we focus on workers with a total employment duration of at least three years over the ten 

years. All wages and earnings are adjusted to 2015 values using the consumer price index 

provided by the German Federal Statistical Office. 

In addition to the SIAB, we utilize the BIBB/IAB Career and Qualification Survey, 

which inquires about the frequency of various tasks performed in workers' jobs. Task 

content from this survey has been used in the German context, for example, by Spitz-

Oener (2006) and Black and Spitz-Oener (2010). We use this information to characterize 

occupations by their tasks, similar to O*NET data in the U.S. Specifically, we rely on the 

1986 and 2006 survey waves to define a measure of each occupation's task complexity 

and merge this information with the SIAB at the occupation level. See Section 5 for 

further details. 

2.2. Evolution of Cross-sectional and Lifecycle Inequality 

Figure 1 Panel A shows the trend in cross-sectional inequality for our sample, which 

 

13 To ensure strong labor market attachment, we restrict the sample to individuals employed for at 

least three years. 
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began rising in the early 1990s and accelerated during the 2000s, driven by declining 

earnings at the lower percentiles (see Dustmann et al., 2009). After the Great Recession, 

earnings grew sharply across the distribution, with no further expansion in inequality 

during this period. This pattern is similar when considering the entire population of male 

workers (see Figure 1 Panel B).14 

Figure 1, Panel C, shows that the evolution of wage inequality at age 25 closely 

tracks overall cross-sectional inequality, suggesting that entry-level wages are a key 

driver of cross-sectional wage dispersion—a pattern also documented for the United 

States (Guvenen et al., 2022). Because it takes time for entry-level wage inequality to 

fully translate into overall inequality, the rise in entry-level dispersion unfolded gradually 

over the 1990s and mid-2000s, driven primarily by declines in the lower percentiles. After 

the Great Recession, however, entry-level wages increased across the entire distribution. 

Rising entry-level inequality is driven mainly by within-occupation rather than 

between-occupation differences, consistent with recent U.S. evidence (Biasi et al., 2025). 

Figure 12 illustrates this by decomposing the variance of log wages at age 25 by birth 

cohort into within- and between-occupation components. The variance of entry-level 

wages nearly tripled—from 0.035 for the 1950 cohort to 0.09 for the 1983 cohort—with 

roughly two-thirds of the increase accounted for by growing within-occupation 

dispersion.15  

Figure 1 Panel D plots lifecycle earnings across birth cohorts, measured as the 

sum of earnings between ages 25 and 34. The median and lower percentiles declined for 

cohorts born up to the late 1970s, although the 10th percentile shows a modest increase 

for early 1970s cohorts entering the labor market after 1995. By contrast, the 90th 

 

14 We do not show the 90th percentile, because wages at this level are censored in the overall 

distribution due to the social security contribution limit. 

15 Recent work by Briskar et al. (2023) and Haltiwanger et al. (2024) highlights changes in industry 

composition as an important driver of rising wage inequality in Italy and the United States. To assess 

the relevance of this channel, Figure A9 presents a two-step variance decomposition: first separating 

between- and within-industry variation, and then decomposing the within-industry component by 

occupation. The results show that the dominant source of rising entry-level wage inequality lies 

within occupations within industries, rather than in shifts across industries or occupations. 
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percentile remained relatively flat until the 1970 cohort and then rose steadily thereafter. 

More recent cohorts experienced substantial gains in lifecycle earnings, particularly at the 

lower end of the distribution. Consequently, the 90–10 log percentile difference follows 

a bell-shaped pattern, peaking with the 1975 cohort (see Figure A1). Lifecycle earnings 

inequality increased by roughly 25 percent from the 1960 to the 1975 birth cohort, before 

declining by about 5 percent between the 1975 and 1985 cohorts. 

As inequality in entry-level wages expanded among early cohorts, the initial rise 

in lifecycle inequality reflects the persistence of initial wage disparities, a mechanism we 

study in detail in Section 3 through our wage process model. However, the following 

decline in lifecycle inequality after the 1975 cohort, shown in Figure 1, Panel D, cannot 

be explained by entry-wage dynamics alone. Instead, the employment margin—typically 

neglected in analyses of cross-sectional inequality—emerges as a central driver. Over our 

sample period, unemployment fluctuated sharply (Figure 2, Panel A), rising from below 

3 percent in 1980 to 7 percent in 1985, then falling again until German reunification in 

1990. In the 1990s, unemployment climbed to 10 percent, peaking at over 11 percent in 

2005, before steadily declining to just above 3 percent by 2019.16 

Figure 2, Panel B, plots the correlation between wages at age 25 and total 

employment duration (in years) between ages 25 and 34. Mapping the mean and median 

duration against each vintile (20 bins) of the age-25 wage distribution17 shows that low-

wage workers are especially vulnerable to non-employment risk. As unemployment rates 

declined after 2005, this pattern aligns with the sharp rise in the 10th percentile of 

lifecycle earnings among recent cohorts (Figure 1, Panel D), which primarily benefited 

low-wage earners. Section 4 quantifies the contribution of the employment margin to the 

observed decline in lifecycle inequality. 

To show that the first ten years of workers’ careers provide a reliable proxy for 

lifecycle earnings, we follow Guvenen et al. (2022) and plot the median wage across ages 

 

16 The Great Recession caused only a small and temporary increase in the unemployment rates. 

17 The sample covers up to ten years of employment and, to ensure consistency with our calculation 

of lifecycle earnings, includes only individuals employed for at least three years. 
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and years in Figure 3, Panel A. The solid lines depict median wages at each age across 

calendar years, while the dotted lines trace age profiles within cohorts from labor market 

entry at age 25. For example, the first dotted line on the left tracks the median log wage 

of the 1960 birth cohort at age 25 in 1985, age 30 in 1990, and so forth. For this cohort, 

wage growth between ages 25 and 55 is about 45 percent, with over 60 percent realized 

by age 34. A similar pattern holds for other cohorts, indicating that total earnings during 

the first decade of work provide a reasonable approximation of lifecycle earnings.  

 

2.3. Earnings Mobility 

A key connection between cross-sectional and lifecycle inequality is earnings mobility. 

In the absence of mobility, cross-sectional inequality translates directly into lifecycle 

inequality. By contrast, with high mobility, where earnings shocks are entirely temporary. 

substantial cross-sectional inequality can exist without generating lifecycle inequality. 

Earnings mobility thus serves as an inverse indicator of the extent to which cross-sectional 

inequality reflects lifecycle inequality. 

To evaluate earnings mobility, we compute the Shorrocks mobility index 

(Shorrocks, 1978) across cohorts, following Kopczuk et al. (2010). The index is defined 

as the ratio of an inequality measure, in our case, the variance, of long-term average 

earnings to the average of that same inequality measure calculated for short-term earnings. 

 

𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠𝑐 = 1 −
𝑉𝑎𝑟 (

1
10

∑ 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑎,𝑐
34
𝑎=25 )

1
10

∑ 𝑉𝑎𝑟(𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑎,𝑐)34
𝑎=25

 

 

The Shorrocks index ranges from 0 to 1, with higher values indicating greater 

earnings mobility. An index close to 1 implies that the variance of long-term earnings is 

much smaller than that of short-term earnings, suggesting that year-to-year earnings 

fluctuations are largely transitory and mobility over the lifecycle is high. By contrast, an 

index near 0 indicates that the variance of long-term earnings closely mirrors that of short-

term earnings, meaning that annual earnings shocks are nearly permanent and mobility is 

low. 
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Figure 3, Panel B, shows the evolution of the Shorrocks index across cohorts. 

Earnings mobility is almost flat for the 1960–1966 birth cohorts, ranging between 0.35 

and 0.40, implying that long-term variance is about 60–65% of short-term variance. It 

then declines to around 0.3 for the 1966-1975 cohorts, after stabilizing for later cohorts. 

This decline in mobility is consistent with entry-level wage inequality becoming more 

important and persistent among recent cohorts. In Section 4, we quantify the contribution 

of changes in the structure of wages and employment to the evolution of mobility. 

 

3. Wage and Employment Process Model 

We model the residual wage using a linear factor model building on Guvenen 

(2009) but allowing for non-stationarity across cohorts and over time (Baker and Solon, 

2003). Specifically, the model includes the individual productivity components 𝛼𝑖𝑐 

(representing time-invariant productivity) and associated prices 𝑝𝑡, along with an AR(1) 

persistent shock 𝜂𝑖𝑡 and an idiosyncratic transitory shock 𝜖𝑖𝑡. The distribution of the 

individual productivity component 𝛼𝑖𝑐 is allowed to vary across entry cohorts 𝑐, while 

its price 𝑝𝑡 and the distributions of other shocks can differ across calendar years 𝑡.  

Thus, the log wage of a worker 𝑖 from cohort 𝑐, with education level 𝑒, and age 

𝑎 in year 𝑡 is modelled as: 

 

ln 𝑤𝑖𝑐𝑒𝑎𝑡 = 𝜇𝑐𝑒𝑎𝑡 + 𝑝𝑡𝛼𝑖𝑐 + 𝑧𝑖𝑎𝑡 + 𝜖𝑖𝑡, (1) 

 𝑧𝑖𝑎𝑡 = 𝜌𝑡𝑧𝑖,𝑎−1,𝑡−1 +  𝜂𝑖𝑡 , (2) 

 

where 𝜇𝑐𝑒𝑎𝑡 is the mean log wage given cohort, education, and age, and 𝑧𝑖𝑎𝑡 is a non-

stationary AR(1) process. In this specification, 𝜇𝑐𝑒𝑎𝑡 collects the observed determinants 

of wages, such as age, education, and calendar year fixed effects, while 𝑝𝑡𝛼𝑖𝑐 + 𝑧𝑖𝑎𝑡 +

𝜖𝑖𝑡 represents the unobserved determinants (the residual wage). The mean and variance 

of each component are specified as follows: 

 

𝐸[𝛼𝑖𝑐|𝑐] =  𝐸[𝜂𝑖𝑡|𝑡] =  𝐸[𝜖𝑖𝑡 | 𝑡] = 0, 

𝑉𝑎𝑟 (𝛼𝑖𝑐 | 𝑐) =  𝜎𝛼𝑐
2 , 𝑉𝑎𝑟 (𝜂𝑖𝑡 | 𝑡) =  𝜎𝜂𝑡

2 , 𝑉𝑎𝑟 (𝜖𝑖𝑡 |𝑡) =  𝜎𝜖𝑡
2 .   
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Notably, we allow the distribution of the 𝛼𝑖𝑐 to vary across cohorts. We thus extend the 

variance decomposition proposed by Lemieux (2006), which assumes that the within-

group variance of unobserved productivity remains constant to identify changes in skill 

prices. Both the price across time and the cohort-specific variance 𝜎𝛼𝑐
2  of the unobserved 

individual productivity 𝛼 are identified, as the autocorrelation of wages provides 

additional identifying variation for estimating the sources of the wage variance. 

Specifically, 𝜎𝛼𝑐
2  is the baseline intercept of the autocovariance profile of each cohort, 

and the price 𝑝𝑡 shifts this intercept in the same way across cohorts but differently across 

time. Therefore, with multiple cohorts each year, we can identify 𝑝𝑡 across time and the 

cohort-specific variance 𝜎𝛼𝑐
2  using the auto-covariance profiles of residual wages.  

The model parameters are identified and estimated by using the autocovariance of 

the residualized wage,  𝑦̂𝑖𝑐𝑒𝑎𝑡 = ln 𝑤𝑖𝑐𝑒𝑎𝑡 − 𝜇𝑐𝑒𝑎𝑡: 

𝐶𝑜𝑣 (𝑦̂𝑖𝑐𝑒𝑎𝑡, 𝑦̂𝑖𝑐𝑒,𝑎+𝑑,𝑡+𝑑) =  𝑝𝑡𝑝𝑡+𝑑 𝜎𝛼𝑐
2 + (∏ 𝜌𝑡+𝑗

𝑑

𝑗=!

) ∑ (∏ 𝜌𝑡−𝑠
2

𝑘−1

𝑠=0

) 𝜎𝜂,𝑡−𝑘
2

𝑎

𝑘=0

+ 1{𝑑 = 0}𝜎𝜂𝑡 , (3) 

where 𝑎 is normalized to be zero at age 25, and 𝑝𝑡 is normalized to be one in the initial 

year. We compute the empirical autocovariances for all cohorts and collect them in a 

single vector 𝜋̂ to minimize 

 

min
𝜃∈Θ

[𝜋̂ − ℎ(𝜃)]′𝑊 [𝜋̂ − ℎ(𝜃)],  

 

where 𝜃 is the set of parameters in equations 1 and 2, ℎ(𝜃) is a vector-value function 

represented by equation 3, and 𝑊 is a diagonal weighting matrix whose element equals 

the number of observations for each component. 18  To manage the large number of 

parameters in our model, we group three consecutive calendar years and cohorts. This 

 

18 Although the inverse of the variance-covariance matrix of the reduced-form estimator 𝜋̂ is 

considered the asymptotically optimal weighting matrix, Altonji and Segal (1996) argue that it 

performs poorly in finite samples. Therefore, following the approach of Baker and Solon (2003) and 

Guvenen (2009), we use the number of observations contributing to each autocovariance as weights. 



15 

 

approach reduces the parameter space and enhances the precision of our estimates.19 We 

estimate the model on all available yearly wage observations of individuals between age 

25 and 59.  

We specify the employment-non-employment transition and non-employment 

duration as follows: 

 

Non-employment risk: Pr(𝑈𝑖𝑎𝑡 = 1 |𝑎, 𝑤𝑖,𝑡−1, 𝑈𝑖,𝑡−1)  = 𝑞(𝑎, 𝑡, 𝑤𝑖𝑡−1, 𝑈𝑖𝑡−1), (4) 

Non-employment duration:  ν̈𝑖𝑎𝑡 =  {
0 if 𝑈𝑖𝑎𝑡 = 0,

min{1, 𝜈𝑖𝑎𝑡} if 𝑈𝑖𝑎𝑡 = 1,
(5) 

 

where 𝜈𝑖𝑎𝑡  follows an exponential distribution as in Guvenen et al. (2021), and the 

distribution is characterized by calendar year, age, and the wage and employment status 

in the previous year with 𝜈𝑖𝑎𝑡 | 𝑎, 𝑡, 𝑤𝑡−1, 𝑈𝑡−1 ∼ exp(𝜆(𝑎, 𝑡, 𝑤𝑡−1, 𝑈𝑡−1)). In practice, 

we construct five groups based on individuals’ wage and employment status in the 

previous year. Four groups comprise fully employed individuals, classified by wage 

quartiles in the previous year, while the fifth group consists of those with some non-

employment. For each groups, we estimate the non-employment probability 

𝑞(𝑎, 𝑡, 𝑤𝑖𝑡−1, 𝑈𝑖𝑡−1) directly from the data as the share of workers in that group who are 

not employed for the full year, divided by the total number of workers in that group in 

that year.  

Since the non-employment duration is modeled as a truncated exponential 

distribution, the expected non-employment duration is given by: 

 

𝐸[𝜈̈𝑖𝑎𝑡 |𝑎, 𝑡, 𝑤𝑖,𝑡−1 , 𝑈𝑖,𝑡−1 = 1] =
1 − exp(𝜆(𝑎, 𝑡, 𝑤𝑡−1, 𝑈𝑡−1))

𝜆(𝑎, 𝑡, 𝑤𝑡−1, 𝑈𝑡−1)
. (6) 

 

The parameter 𝜆(𝑎, 𝑡, 𝑤𝑡−1, 𝑈𝑡−1)  is estimated by solving the non-linear equation (6), 

 

19 For example, we specify the price and individual FE as 𝑝1975 = 𝑝1976 = 𝑝1977 ≠ 𝑝1978 =

𝑝1979 = 𝑝1980 ≠ 𝑝1981 = ⋯, and 𝜎𝛼1950
2 =  𝜎𝛼1951

2 =  𝜎𝛼1952
2 ≠ 𝜎𝛼1953

2 =  𝜎𝛼1954
2 =  𝜎𝛼1955

2 ≠

𝜎𝛼1956
2 = ⋯, and so on. 
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replacing  the left-hand side with its empirical counterpart, 𝐸̂[𝜈̈𝑖𝑎𝑡 |𝑎, 𝑡, 𝑤𝑖,𝑡−1 , 𝑈𝑖,𝑡−1 =

1], estimated as the average number of days in non-employment divided by the total 

number of days in the year for all individuals in the respective group who are not 

employed full-year. The parameter 𝜆 can thus be interpreted as a hazard rate.20 

While our model accounts for the correlation between earnings capacity and non-

employment risk through equations (4)–(6), it does not explicitly capture job-

displacement effects on wages. Prior studies, such as Jacobson et al. (1993) or 

Arulampalam (2001), show that job displacement effects tend to be persistent and would 

therefore be absorbed by persistent shocks in our model. Consequently, we may 

understate the role of non-employment risk overstate the role of persistent shocks. Despite 

this limitation, our model fits the data well, as we show in Section 4. Moreover, because 

the potential bias works against our main argument, it does not weaken our conclusion 

that the employment margin is crucial for explaining the evolution of the lower tail of the 

lifecycle earnings distribution. 

Our model follows a restricted income process (RIP). An alternative, a 

heterogeneous income process (HIP) model, allows the age profile to vary across 

individuals through random coefficients, while the RIP model absorbs this heterogeneity 

in wage growth in the persistent shock 𝑧𝑖𝑎𝑡. We do not adopt the HIP model for three 

reasons. First, as Guvenen (2009) emphasizes, identification of HIP relies heavily on 

higher-order autocovariances. Since few individuals contribute to these moments, the 

resulting estimates are difficult to interpret in the full sample. Furthermore, ensuring 

internal validity requires restricting the analysis to individuals with long wage histories 

(20 years in Guvenen’s case). Such a restriction poses severe challenges for analyzing 

wage inequality, and especially lifecycle earnings inequality, as it would limit attention 

to continuously employed workers. Identification of heterogeneous profiles for more 

 

20 However, note that λ governs the expected duration of non-employment spells, not the timing of 

non-employment episodes within the annual observation window. For example, a value of 𝜆 = 1.5 

corresponds to an expected non-employment fraction of roughly 50% of the year. In our model, this 

could correspond either to a continuous six-month non-employment spell from January to June or to 

two separate three-month spells, for example from January to March and July to September. 
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recent cohorts is also infeasible, given the limited availability of higher-order 

autocovariances. 

Second, the evolution of cross-sectional wage inequality closely mirrors entry-

level wage dynamics (see Section 2), suggesting that cohort-specific variance 𝜎𝛼𝑐
2  of the 

unobserved individual productivity and their associated prices are more important than 

heterogeneity in wage growth. Thus, whether wage variance arises through RIP or HIP is 

not central to our argument.  

Third, our model already requires estimating a large number of parameters. 

Allowing for a non-stationary HIP across cohorts would substantially increase 

computational complexity.  

4. Results 

4.1. Parameter Estimates 

Panels (A) – (E) of Figure 4 show estimates of the parameters from equations (1) and (2). 

Panel A displays the variance of the individual productivity component, 𝜎𝛼𝑐
2  , which 

exhibits a clear pattern across cohorts. For the 1950 cohort, the variance is about 0.015 

and nearly doubles over the next 45 years. Correspondingly, the standard deviation 

increases from 0.12 to 0.17, a 40 percent rise, accounting for roughly half of the growth 

in the standard deviation of log wages over the same period (from 0.24 to 0.34).  

The price of individual productivity, 𝑝𝑡, rose by about 50 percent between 1975 

and 2011, remained stable until 2015, and declined slightly thereafter (Panel B). This 

trajectory aligns with the findings of Dustmann et al. (2025), who document a trend 

reversal in the evolution of the skill premium for observed skills in Germany following 

the Great Recession. Our analysis complements their findings by demonstrating that the 

price for unobserved productivity also ceased to increase after the Great Recession. 

Together, these results reinforce our descriptive evidence that inequality at market entry 

is a key driver of wage inequality, which persists throughout the lifecycle.  

Panel C shows estimates of the persistence parameter 𝜌𝑡 of the AR(1) process. 

The parameter is very close to one, suggesting that persistent shocks to wages are almost 

permanent for most of our sample period. Panel D depicts the estimates of the variance 
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𝜎𝜂𝑡
2  of the AR(1) process. This parameter fluctuates around 0.005 in the first half of the 

period and then declines after 2000. Since our persistence parameter 𝜌𝑡 ≈ 1, the variance 

of accumulated persistent shocks over 𝑠 years can be approximated by 𝑠𝜎𝜂𝑡
2 . With an 

average variance of about 0.005, the accumulated variance 𝑠𝜎𝜂𝑡
2   amounts to 0.05 ten 

years after labor market entry, which is comparable in magnitude to the composite 

variance of the individual productivity component and its price (𝑝𝑡
2𝜎𝛼𝑐

2 )21 . Thus, the 

persistent shock 𝜂𝑖𝑡 also generates substantial wage dispersion in levels at age 34, as 

individual wages diverge over the career due to these lasting shocks. However, its 

evolution over time is smaller than that induced by 𝑝𝑡
2𝜎𝛼𝑐

2 , although we observe a non-

negligible decline in persistent shocks in recent years. Consequently, changes in persistent 

wage shocks play a less important role in driving the overall rise in wage inequality than 

changes in the individual productivity component, as shown in our counterfactual 

simulation in Section 4. 

Finally, Panel E presents estimates for the transitory shock 𝜖𝑖𝑡, which remains 

relatively stable over time. For most of the period, the estimated variance 𝜎𝜖𝑡
2   ranges 

between 0.008 and 0.010, but rises to almost 0.012 between 2005 and 2010, coinciding 

with the Great Recession. This indicates that our model captures the macroeconomic 

shocks influencing wage volatility. The magnitude of the transitory shock is comparable 

to the variance of the yearly innovation of the persistent shock 𝜎𝜂𝑡
2 . However, since the 

transitory shock does not accumulate over time, our model suggests that these temporary 

shocks are less influential than permanent or persistent shocks in shaping long-term wage 

dynamics. We confirm this in our counterfactual simulation in Section 4. 

As shown in Figure 4, the parameters for persistent and transitory shocks are 

estimated with low precision for 1975–1977. This arises from weak identification, as our 

sample includes only individuals born in 1950 or later. Consequently, just one cohort is 

observed in 1975, two cohorts in 1976, and three in 1977. Distinguishing persistent from 

transitory shocks relies on the autocovariance of wages; however, for these cohorts, the 

 

21 For example, for the cohort born in 1971, the estimated total variance of the individual 

productivity component and its time-varying price component at age 34 is 𝑝2005
2 𝜎𝛼,1971

2 ≈ 0.052. 
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autocovariance matrix contains only four off-diagonal elements. Since estimating the 

AR(1) process requires two parameters, identification is only barely achieved, leading to  

large standard errors. For this reason, we use the year 1980 as the base year in our 

counterfactual simulations below.  

Figure 5 summarizes the estimation result of the employment component of the 

model. The two histograms, in red and blue, show the distribution of the non-employment 

duration parameter 𝜆  among those non-employed (blue) and employed (red) in the 

previous period, plotted against the left y-axis. The black line, plotted against the right y-

axis, depicts the relation between the estimated value of 𝜆  and the expected non-

employment duration that corresponds to this value according to the cumulative 

distribution function of the truncated exponential distribution as defined in Equation (5).  

For example, a value of 𝜆 = 0  corresponds to full non-employment throughout the year 

(zero days of employment), whereas a value of 𝜆 = 5 implies a non-employment share 

of 20%, that is, employment for 80% of the year. 

Long-term non-employment is highly persistent: The blue histogram shows the 

distribution of 𝜆 and the corresponding non-employment durations for individuals who 

experienced some non-employment in both the previous and the current year. This group 

tends to remain non-employed for the full year.22 In contrast, the distribution of 𝜆 for 

those newly entering non-employment after being fully employed in the previous year  

(red histogram) is much more dispersed. For example, a worker with 𝜆 = 1.5 

experiences roughly 6 months (50 percent of the year; see black solid line) of non-

employment, whereas a worker with 𝜆 = 0.75  experiences about 8.4 months (70 

percent) of non-employment.  

4.2. Counterfactual Simulation 

We conduct counterfactual simulations using the estimated wage process and non-

 

22 Note that in our model, experiencing non-employment in the previous year does not necessarily 

imply being non-employed for the entire year. Repeated years of non-employment are also consistent 

with multiple short employment spells that do not last the full year, reflecting unstable or 

intermittent employment. 
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employment risk parameters to disentangle and quantify the relative importance of the 

various sources of cross-sectional and lifecycle inequality. The procedure consists of four 

steps: 

1. Demographics: Replicate the demographic composition (educational distribution and 

cohort size) at age 25. 

2. Wages: Simulate log daily wages ln 𝑤𝑖𝑐𝑒𝑎𝑡 between the ages of 25 and 34 for all 

individuals using equations (1) and (2), drawing shocks from normal distributions 

with mean zero and the estimated year- or cohort-specific variance. 

3. Employment: Based on the simulated potential wages from step 2, simulate the 

employment status 𝑈𝑖𝑎𝑡  and non-employment duration 𝜈̈𝑖𝑡  according to equations 

(4) and (5), assuming all individuals are employed at age 25 (consistent with our 

sample restriction). 

4. Earnings: Compute earnings by adjusting wages for simulated employment 

duration1 − 𝜈̈𝑖𝑡: 𝑒̂𝑖𝑡 = (1 −  𝜈̈𝑖𝑡) exp(𝜇𝑐𝑒𝑎𝑡 + 𝑝𝑡𝛼𝑖𝑐 + 𝑧𝑖𝑎𝑡 + 𝜖𝑖𝑡). 

A detailed description of the simulation procedure is provided in Appendix A. 

4.2.1. Counterfactual Simulation Scenarios 

To perform the counterfactual simulation, we set the variance of the individual 

productivity component 𝜎𝛼𝑐
2  to its estimated value for the 𝑐 =1955 birth cohort, while 

holding all other parameters that vary by calendar year at their estimated values for 

𝑡 =1980, the entry year of the 1955 cohort.23 We then simulate the wage distribution 

under various scenarios, sequentially allowing additional parameters to change over time. 

In scenario CF1, only demographic and educational characteristics and their returns, 𝜇𝑒𝑎𝑡, 

vary. Scenario CF2 adds variation in the variance of the individual FE 𝜎𝛼𝑐
2 . Scenario CF3 

instead allows the skill price 𝑝𝑡 (but not 𝜎𝛼𝑐
2 ) to change. In scenario CF4, both 𝜎𝛼𝑐

2  and 

𝑝𝑡  vary. Scenario CF5 adds changes in the persistent shock parameters 𝜌𝑡  and 𝜎𝜂𝑡
2  . 

 

23 Our simulations start in 𝑡 = 1985 and 𝑐 = 1960 respectively, as these are the first years and 

cohorts for which we can compute a fully simulated cross-sectional distribution and a 10 year 

earnings inequality estimate. We use 𝑐 = 1955 and 𝑡 = 1980 as baseline values as we aim to 

approximate the cross-sectional wage inequality for these first periods by the average parameters 

that the first cohorts in these estimates experienced. 
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Scenario CF6 additionally allows in the variance of the transitory shock, 𝜎𝜖𝑡
2 , to vary. 

Scenario CF7 corresponds to the full model, further incorporating  changes in non-

employment risk and duration. Table A1 in the Appendix summarizes the parameters that 

are fixed and those that vary across the different scenarios. 

4.2.2. Cross-Sectional Inequality 

The counterfactual simulations for cross-sectional inequality are presented in Figure 6.24 

As discussed in Section 2, the p90-p10 log difference of cross-sectional wage inequality, 

shown in solid black, was approximately 0.57 in 1985 and increased to around 0.83 by 

the onset of the Great Recession. 

In Scenario CF1 (dotted black line), all parameters of the stochastic component of 

the wage process and non-employment probabilities are fixed at their 1980 values (for 

the 1955 cohort), while only the composition and returns to observables vary over time. 

The level of cross-sectional inequality in this scenario is relatively close to the observed 

data (solid black line), but increases only marginally, from approximately 0.53 to 0.58. 

Thus, changes in the composition and average returns to observables —specifically, age, 

experience, and education —account for a significant portion of the level of inequality 

but do not explain the observed trend over time. This leaves the largest share of the trend 

in wage inequality to be explained by the stochastic component of wages or the 

employment margin. 

Scenario CF2 (solid blue with small dots) additionally allows the variance of the 

individual productivity component, 𝜎𝛼𝑐
2 , to vary across cohorts. This addition explains 

roughly one-third of the increase in wage inequality. Scenario CF3 (dotted blue line) 

instead allows observables and the skill price 𝑝𝑡  (but not 𝜎𝛼𝑐
2  ) to vary across time. 

Comparing the change from CF1 and CF3 with the change from CF1 to CF2, we find that 

the changes in the variance of the individual fixed effects and the skill price are roughly 

equally important in explaining the rise in cross-sectional inequality over our sample 

period. Scenario CF4 (solid red with symbol markers “v”) allows both the variance 𝜎𝛼𝑐
2  

 

24 In the simulation, cross-sectional inequality is calculated for individuals employed for at least one 

day within a given year, while lifecycle inequality is measured for individuals with at least three 

years of employment between ages 25 and 34, ensuring alignment with our sample restrictions. 
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and the price 𝑝𝑡 to vary together with observables. The combined effect explains almost 

the entire increase in cross-sectional inequality. 

Next, to examine the role of persistent shocks, we additionally allow both the 

persistency 𝜌𝑡  and the variance of the AR(1) innovation 𝜎𝜂𝑡
2   to vary over time (CF5, 

dotted red line). As suggested by the stable parameter estimates (Figure 4), the 

contribution of the AR(1) process, visible in the change from CF4 to CF5, is relatively 

modest. Although it slightly raises the p90-p10 ratio, this is primarily due to the low 

persistence parameter 𝜌𝑡, estimated to be around 0.9 in 1980. However, the decline in the 

variance of persistent shocks after 2000 (Figure 4, Panel D) helped mitigate the rise in 

inequality. Since the persistent shock 𝜂𝑖𝑡  accumulates over time, the impact of its 

reduced variance was not immediately apparent in the early 2000s but became more 

significant during the 2010s. The stabilization of cross-sectional inequality during the 

2010s can thus be attributed to a decline in the variance of persistent shocks, together  

with the stabilization of both price and variance of the individual productivity component. 

Absent the decline in the variance of persistent shocks, our model would have predicted 

a slight increase in inequality over this period. 

Scenario CF6 also allows for changes in the transitory shock (solid green line with 

"x" markers). While the variance of the transitory shock increased by 20 percent during 

the Great Recession (Figure 4 Panel E), its contribution to the rise in inequality is much 

smaller than that of the combined contribution of the variance of individual fixed effects 

and skill prices, both in terms of magnitude and change over time. 

The final scenario (CF7, dotted green line) corresponds to our full model, where 

all parameters, including the employment margin, are allowed to vary. The additional 

effect of changes in the employment margin (comparing CF6 to CF7) is negligible. 

Although cross-sectional wage inequality, by definition, only accounts for workers 

employed in a given year, non-employment can still influence inequality if selection into 

non-employment alters the wage distribution. However, our results suggest that changes 

in selection into non-employment had little impact on the observed trends in inequality. 

To further examine the role of compositional changes through changes in selection 

into non-employment, we compute two additional counterfactual scenarios: one, an 

extreme case where non-employment occurs only at the bottom of the wage distribution 
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(Selection), and another where non-employment risk is uncorrelated with wages (No 

Selection), see Appendix B and corresponding Figures A3 and A4. The Figure shows that 

differences in non-employment probabilities across the wage distribution do not 

meaningfully impact the cross-sectional wage distribution, with the no-selection scenario 

aligning closely with the model prediction without considering the employment margin. 

However, even if the employment margin is negligible in shaping cross-sectional 

inequality, the extensive margin of employment may still play an important role in 

shaping lifecycle inequality, as discussed below. 

4.2.3. Life-Cycle Inequality 

Figure 7 presents the counterfactual simulation analysis of lifecycle inequality. The solid 

black line shows the evolution of lifecycle inequality across birth cohorts, as discussed in 

Section 2. Lifecycle inequality increased by approximately 25 percent from the 1960 

cohort, which entered the labor market at age 25 in 1985, to the 1975 cohort, which 

entered in 2000, before declining by roughly 5 percent by the 1985 birth cohort. 

The decomposition reveals several parallels with cross-sectional analysis. Notably, 

the combined rise in the variance of the individual productivity component (𝜎𝛼𝑐
2 ) and its 

prices (𝑝𝑡), captured in scenario CF4, drove the steady increase in lifecycle inequality 

over this period.25 For example, relative to the 1960 cohort, lifecycle inequality among 

the 1975 cohort is almost 25 log points higher, with changes in the variance of the 

individual productivity component and its price alone accounting for more than 60 

percent of this increase. Unlike in the cross-sectional analysis, however, about 40 percent 

of the rise remains unexplained. The contribution of persistent shocks (scenario CF5) and 

transitory shocks (scenario CF6) is limited. Additionally, changes in observables 

(education and age composition) and their returns (CF1) matter for the level but not for 

the change, mirroring the cross-sectional results. 

A distinctive feature of lifecycle inequality is the role of non-employment risk. 

While often overlooked in studies of cross-sectional inequality—and, as shown above, it 

 

25 The counterfactuals CF2 and CF3 reveal that, similar to the cross-sectional analysis in Figure 6, 

both factors had a roughly equal impact. 
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has only a minor impact in that context—non-employment risk substantially influences 

both the level and trend of lifecycle inequality. For example, for the 1975 birth cohort, 

the log p90-p10 ratio of lifecycle earnings is about 0.85 when non-employment risk is 

excluded (fixed at the low non-employment level of 1980, Scenario CF6), but exceeded 

1.0 when employment dynamics are incorporated (CF7). Moreover, the wage process 

alone cannot account for the inverted U-shaped trend in lifecycle inequality. The 

employment margin is essential for explaining the post-1975 decline: ignoring it not only 

mistakes the level of inequality but also biases the estimated trend.  

Non-employment is closely linked to wages: low-wage workers face substantially 

higher non-employment risk than their high-wage counterparts (see Figure 2, Panel B), 

thereby amplifying earnings inequality. Panels A and B of Figure 8 show that the 10th 

percentile of lifecycle earnings is far more sensitive to non-employment risk than the 90th 

percentile. 

To better understand the role of employment dynamics in shaping the decline in 

lifecycle inequality after the 1975 cohort, we conduct additional counterfactual 

simulations that isolate changes in the parameters of the employment process. Specifically, 

we simulate outcomes while holding either the non-employment entry probability 

𝑞(𝑎, 𝑡, 𝑤𝑖,𝑡−1, 𝑈𝑖,𝑡−1) or the expected non-employment duration 𝜈̈𝑖𝑎𝑡 fixed at their 1980 

values, allowing all other components of the model to vary as in counterfactual CF7. 

These simulations show that the decline in lifecycle inequality is driven not by changes 

in the probability of entering non-employment but by shorter non-employment spells—

particularly among individuals in the lowest wage quartile. Indeed, shorter spells for this 

group account for almost the entire reduction in lifecycle inequality among cohorts born 

after 1975. 

Interpreted within a standard search-and-matching framework, non-employment 

risk corresponds to the separation rate, while non-employment duration reflects the job-

finding rate. In job-ladder models such as Moscarini and Postel-Vinay (2018), rising job-

finding rates result from more frequent matches in tighter labor markets. Dustmann et al. 

(2025) document a substantial increase in labor market tightness in Germany over this 

period and show that it reduced cross-sectional wage inequality. Our findings suggest that 

increasing labor market tightness also contributed to the decline in lifecycle earnings 
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inequality—by shortening non-employment durations in addition to its documented 

effects on wages. 

Moreover, non-employment can be viewed as a persistent shock: experiencing 

non-employment in one year increases both the probability and the expected duration of 

non-employment in the following year (see Figure 5). Thus, while non-employment has 

only a limited effect on cross-sectional inequality, it plays a substantial role in shaping 

lifecycle inequality. 

4.2.4. Earnings Mobility 

We now use our counterfactual simulation to study the evolution of earnings mobility. 

Conceptually, mobility links the cross-sectional distribution of earnings to their evolution 

over the lifecycle, measuring how short-term earnings fluctuations translate into long-

term differences. As shown earlier, both cross-sectional wage and lifecycle earnings 

inequality have increased, but this does not necessarily imply lower mobility. Whether 

mobility rises or falls depends on which components—permanent, persistent, or 

transitory—drive the increase in dispersion. 

Appendix G formally derives these relationships. A higher permanent component 

(𝜎𝛼𝑐
2 𝑝𝑡)  reduces mobility, greater transitory variance (𝜎𝜖𝑡

2 ) raises it, and a higher 

innovation variance of the persistent shock (𝜎𝜂𝑡
2 ) has an ambiguous effect depending on 

persistence and the relative sizes of the other components. 

Figure 9 summarizes the counterfactual simulations. Scenario CF1 shows that changes in 

observables and their returns (𝜇𝑐𝑒𝑎𝑡) modestly increased mobility, but cannot explain its 

overall decline. In contrast, the rise in the variance and price of the individual productivity 

component (𝜎𝛼𝑐
2 , 𝑝𝑡) generated a marked reduction in mobility beginning with the 1960 

cohort (CF2–CF4). Their combined effect outweighed the modest positive contribution 

of observables, leading to the stabilization of mobility after the 1975 cohort. Scenarios 

CF5–CF6 indicate that permanent and transitory wage shocks have limited influence on 

the trend, while the employment margin affects the level but not the dynamics of mobility. 

The full model (CF7), which incorporates all channels, closely matches both the observed 

level and cohort evolution of mobility. 

The decline in mobility reflects changes in the wage process parameters. As shown in 

Figure 4, both the variance of the individual productivity component and its price 
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increased sharply until the mid-2000s, then stabilized. This pattern mirrors the observed 

fall and subsequent stabilization of mobility. A higher 𝜎𝛼𝑐
2  raises the share of earnings 

variance fixed at labor market entry, while a higher 𝑝𝑡 magnifies its contribution to total 

dispersion (see Proposition G1). As more of wage inequality becomes tied to fixed 

heterogeneity, the relative importance of transitory and persistent shocks declines, 

reducing mobility.26  

By contrast, a higher transitory variance (𝜎𝜖𝑡
2 )  increases mobility (Proposition G2). 

Although 𝜎𝜖𝑡
2  rose from about 0.006 in 1985 to 0.01 in 2019; its overall impact is modest 

given its small magnitude relative to other components. The innovation variance of the 

persistent shock (𝜎𝜂𝑡
2 ) declined after 2005, which should have lowered mobility 

(Proposition G3). However, since the persistence parameter 𝜌 is close to one, persistent 

shocks are almost permanent, making short- and long-term variance components similar 

and limiting the effect of changes in 𝜎𝜂𝑡
2  on mobility. 

5. Mechanisms for an Increase in the Variance of Individual 

Fixed Effects 

The results in Section 4 show that a key factor influencing the development of cross-

sectional wage and lifecycle earnings inequality is the growing variance of individual 

fixed effects (𝑝𝑡𝛼𝑖𝑐), with increases in both the price 𝑝𝑡 and the variance 𝜎𝛼𝑐
2  accounting 

for this trend roughly equally. This suggests that inequality at the start of careers has 

expanded and become more enduring over recent decades. Individual fixed effects are 

often seen as reflecting personal ability, but it is implausible that the spread of unobserved 

ability nearly doubled between the cohorts 1950 and 1994. 

An alternative interpretation is that the rising variance of individual fixed effects 

reflects changes in how individual ability is translated into productivity. More specifically, 

 

26 Intuitively, the fixed component contributes equally to both long- and short-term variance, unlike 

shocks, which average out over time. Increasing its share of total variance raises both long- and 

short-term variance proportionally but reduces the relative weight of the transitory components that 

generate mobility—the difference between long- and short-term variance. As a result, the two 

variances converge, their ratio approaches one, and mobility declines. 
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it may capture shifts in how workers’ abilities are utilized, shaped by evolving 

technologies, labor market frictions, and institutional factors.27  To illustrate, consider 

two types of tasks: routine and complex. When demand for routine tasks is high, even 

high-ability workers may perform these tasks where their ability has little effect on 

productivity, leading to limited dispersion across the ability distribution. By contrast, 

when demand for complex tasks rises, more workers are drawn into the complex sector, 

incentivized by the higher relative price of complex tasks. In this setting, ability translates 

more directly into productivity, raising the variance of worker productivity—as captured 

by the fixed effect net of prices in our model.  

To provide an interpretable benchmark, we translate the estimated cohort-specific 

variance of the individual productivity component into percentile productivity ratios. 

Since the income process is estimated in logs, the individual productivity term 

𝛼represents log productivity, implying that productivity in levels is given by exp (𝛼). 

For a normal distribution, the 90–50 log percentile difference equals 1.2816𝜎𝛼. Based 

on our estimates, the 90th percentile worker is about 27% more productive than the 

median worker in the 1950 cohort, increasing to 47% in the 1994 cohort. The 

corresponding 90–10 ratios rise from roughly 62% to 118%. We next formalize the 

underlying mechanism, showing how technological change can strengthen the link 

between ability and productivity—and thereby widen wage inequality—without 

requiring changes in the ability distribution or educational attainment. 

 

5.1. A Roy Model of Skill-biased Technological Change  

Our model builds on the canonical framework of Acemoglu and Autor (2011), extending 

it by allowing workers to choose between complex and routine tasks within occupations.28 

Endogenizing task choice implies that sectoral composition can adjust in response to a 

 

27 In line with this, Hsieh et al. (2019) suggest that a significant portion of U.S. economic growth 

can be attributed to improved talent allocation. 

28 In Appendix G Table A3 we illustrate how – within the same occupations – workers can 

specialize in performing more routine or more complex tasks. 
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rising skill premium. It also means that the variance of the individual productivity 

component 𝛼 in our statistical model can rise under skill-biased technological change, 

even when the distribution of worker ability is unchanged. In this way, our model provides 

a structural interpretation of our income process estimates: rising dispersion in fixed 

effects net of prices reflects reallocation of workers across tasks of different complexity, 

rather than shifts in the underlying distribution of abilities. This mechanism operates 

alongside the price channel we also document, whereas in standard models the latter is 

typically the sole driver.  

Our approach relates to Cortes (2016), who develops a Roy model in which 

differences in how ability maps into productivity across occupations generate sorting 

patterns and explain between-occupation polarization. That contribution highlights an 

important between-occupation mechanism. By contrast, our framework focuses on 

heterogeneity in task choice within occupations, motivated by the evidence presented in 

Section 2, which shows that most of the increase in entry-level wage inequality arises 

within occupations.  

The model delivers three testable predictions. First, workers performing complex 

tasks earn more than workers performing routine tasks within the same occupation.  

Second, the magnitude of the increase in within-occupation variance depends on initial 

complexity: occupations starting with very low or very high complexity experience larger 

rises in inequality than those with moderate complexity. Third, increases in task 

complexity are associated with greater within-occupation inequality. We test both 

predictions in the data. 

 

5.1.1. Model 

On the demand side, consider a firm that produces output using two types of labor: 

workers performing complex tasks 𝐶 and workers performing routine tasks 𝑅. The firm 

solves the following profit maximization problem: 

 

max
(𝐶,𝑅)∈ℝ+

2
[𝜔𝐶𝜑 + (1 − 𝜔)𝑅𝜑]

1
𝜑 − 𝑤𝐶𝐶 − 𝑤𝑅 𝑅 , (7) 
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where 𝜔 ∈ (0, 1) is factor productivity of the complex (or non-routine) tasks, 𝜑 ≤ 1 and 

the elasticity of substitution is 
1

1−𝜑
. This gives rise to the relative demand function, 

 

𝐶𝐷

𝑅𝐷
= (

𝜔

1 − 𝜔

𝑤𝑅

𝑤𝐶
)

1
1−𝜑

, (8) 

 

indicating that relative demand for complex tasks increases in factor productivity 𝜔 and 

decreases in the relative wage 
𝑤𝐶

𝑤𝑅
 . 

On the supply side, suppose there is a continuum of workers with population one. 

Each worker draws ability 𝑆 ∼ 𝒩(0, 𝜎2), which determines their effective unit of labor. 

Productivity depends on both ability and task type: a worker supplies exp(𝑆) units of 

effective labor when preforming complex tasks and exp (𝛿𝑆)  units when performing 

routine tasks. The parameter 𝛿 ∈ (0, 1) captures the relative  importance of ability in 

routine vs complex tasks. If 𝛿 is close to 0, low-ability workers are almost as productive 

as high-ability workers in the routine sector.  

Each worker chooses the sector that maximizes earnings, selecting the complex 

sector if and only if 

exp(𝑆) 𝑤𝐶 ≥ exp(𝛿𝑆) 𝑤𝑅 , ∴  𝑆 ≥ 𝑆∗ =
1

1 − 𝛿
ln (

𝑤𝑅

𝑤𝐶
) . (9)  

 

The aggregate labor supply is 

 

𝐶𝑆 =  ∫ exp(𝑠) 𝑓𝑆(𝑠)𝑑𝑠
∞

𝑆∗

= exp (
𝜎2

2
) [1 − Φ (

𝑆∗

𝜎
− 𝜎)] , (10)

𝑅𝑆 =  ∫ exp(𝛿𝑠) 𝑓𝑆(𝑠)𝑑𝑠
𝑆∗

−∞

= exp (
𝛿2𝜎2

2
)  Φ (

𝑆∗

𝜎
− 𝛿𝜎) , (11)

 

 

where 𝑓𝑆(⋅) is the probability density function of 𝑆 and Φ(⋅) is the standard normal 

cumulative distribution. 

Workers’ sectoral choices are governed by comparative advantage, with the 

effective unit of labor being larger (smaller) for complex tasks than routine tasks if 𝑆 >
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0 (𝑆 < 0). The threshold ability level 𝑆∗ decreases in the relative wage 
𝑤𝐶

𝑤𝑅
, implying 

that the share of workers providing complex tasks rises with the relative award to complex 

tasks.  

Through the lens of our wage process model, the effective unit of labor 

corresponds to the individual productivity component 𝛼𝑖𝑐 , whereas the relative wage 

ratio 
𝑤𝐶

𝑤𝑅
 corresponds to the price 𝑝𝑡. Our comparative statics, therefore, focus on how 

skill-biased technological change affects the distribution of realized productivity.  

Under our assumptions about the ability distribution and the functional form of 

the effective unit of labor, the resulting earnings distribution is log-normal, conditional 

on task choice. An equilibrium consists of (𝐶𝐷 , 𝑅𝐷 , 𝐶𝑆 , 𝑅𝑆, 𝑆∗,
𝑤𝐶

𝑤𝑅
)  that satisfies 

equations (8)–(11) and the market clearing conditions, 𝐶𝐷 = 𝐶𝑆  and 𝑅𝐷 = 𝑅𝑆  . This 

equilibrium is uniquely determined. From equations (8) and (9) and market-clearing 

conditions, we obtain 

(1 − 𝛿) 𝜇 +
(1 −  𝛿2)𝜎2

2
+ ln

1 −  Φ (
𝑠∗

𝜎 − 𝜎)

Φ (
𝑠∗

𝜎
− 𝛿𝜎)

=
1

1 − 𝜑
[ln

𝜔

1 − 𝜔
+ (1 − 𝛿)𝑆∗] . (12) 

Since the left-hand side of this equation is decreasing and the right-hand side increasing 

in 𝑆∗, the ability threshold 𝑆∗ is uniquely determined. Equation (9) then pins down the 

relative wage, and equations (10) and (11) determine the equilibrium labor supply.  

5.1.2. Model Implications and Comparative Statics 

One testable implication of the model is that workers in the complex sector earn more 

than workers in the routine sector. This follows directly from the sorting of high-ability 

workers into the complex sector and low-ability workers into the routine sector. 

Proposition 1. 

For any 𝑆0 ≤ 𝑆∗ ≤ 𝑆1, exp(𝛿𝑆0) 𝑤𝑅  ≤ exp(𝑆1) 𝑤𝐶 . 

Proof 

See Appendix C. ∎ 

To analyze the role of skill-biased technological change, which increases factor 

productivity 𝜔, we conduct comparative statics. 
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Proposition 2. 

1. The relative wage is increasing in 𝜔: 
𝜕

𝜕𝜔

𝑤𝐶

𝑤𝑅
> 0. 

2. The share of workers providing complex tasks is increasing in 𝜔: 
𝜕

𝜕𝜔
𝑆∗ < 0. 

Proof 

See Appendix C. ∎ 

This is the standard result shown, for example, by Acemoglu and Autor (2011). 

Intuitively, when complex tasks become more productive relative to routine tasks, the 

relative demand for complex task input rises, increasing the relative wage to attract more 

workers. The higher relative wage then induces marginal workers to transition from 

routine to complex tasks. 

Proposition 3. 

Let 𝜉(𝑆; 𝑆∗) denote the (realized) effective unit of labor of a worker with ability 𝑆, given 

the threshold value 𝑆∗.  

1. For 𝑆∗ > 0 , 𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗))  is inverted U-shaped. For 𝑆∗ > 0 , there exists 𝑆̅ > 0 

such that for 𝑆∗ > 𝑆̅, 
𝑑

𝑑 𝑆∗
 𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) < 0, for 𝑆∗ = 𝑆̅, 

𝑑

𝑑 𝑆∗
 𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) = 0 

and for 𝑆∗ < 𝑆̅, 
𝑑

𝑑 𝑆∗  𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) > 0. 

2. For 𝑆∗ = 0, 
𝑑

𝑑 𝑆∗  𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) = 0. 

3. For 𝑆∗ < 0, 
𝑑

𝑑 𝑆∗  𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) < 0. 

Proof 

See Appendix C. ∎ 

 

Combining Propositions 2 and 3 yields the following result: 

Corollary 1. 

1. Skill-biased technological change increases the variance of the effective unit 

of labor when technology is at a low or high level. 

2. Skill-biased technological change has little or no effect—and may even 

reduce—the variance of the effective unit of labor when technology is at a 

moderate level. 



32 

 

Proof 

See Appendix C. ∎ 

Corollary 1 highlights that skill-biased technological change has a heterogeneous 

impact on the variance of effective labor input. The variance rises at low or high 

technology levels, but the effect diminishes (and can even turn negative) at moderate 

technology levels, where the threshold 𝑆∗ is close to 0. 

To build intuition for Propositions 2 and 3 and Corollary 1, consider Figure 11. 

Panel A shows a situation where the level of technology 𝜔 is low, the ability threshold 

𝑆∗ is high, few workers are employed in the complex sector, and the average effective 

unit of labor across all workers (dashed line) is low. A decline in 𝑆∗  induced by 

technological change incentivizes the marginal worker with ability 𝑆∗ to switch from 

routine to complex tasks sector (illustrated by the upward shift of the orange circle).  

Because their abilities are now better reflected in their productivity, their effective unit of 

labor deviates further from the mean, thereby raising the variance of effective labor input, 

𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)).  

Panel B depicts the intermediate case. As 𝑆∗ decreases further, the deviation of 

the marginal worker’s effective unit of labor from the mean becomes smaller in the 

complex than in the routine sector. While sectoral switching still raises the variance in the 

complex sector, it can lower the aggregate variance of productivity due to composition 

effects. At the special case where 𝑆∗ = 0 , the marginal worker’s effective labor is 

identical across sectors (exp(𝑆∗) = exp(𝛿𝑆∗) = 1), implying no effect on variance.  

Panel C considers high levels of technology (𝑆∗ < 0), where most workers are 

already in the complex sector. Here, the marginal worker´s ability is sufficiently low that 

they are more productive in routine tasks, yet a decrease in 𝑆∗ still induces them to enter 

the complex sector due to its higher relative price. Because their effective labor in routine 

tasks lies below the mean, the deviation from the mean is larger once they switch, again 

increasing the variance.  

Importantly, this non-monotonic relationship between technology and the 

variance of effective labor input remains robust when we relax the assumptions on the 

distribution of worker ability and on the functional form of task-specific productivity (see 

Appendix D). 
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Our model implies that technological change influences wage inequality through 

two channels: the price of labor efficiency 𝑤 = 𝑤𝐶/𝑤𝑅 , and the variance of labor 

efficiency, 𝑉𝑎𝑟 (𝜉) , induced by sorting. In our statistical model, these parameters 

correspond to 𝑝𝑡 and 𝜎𝛼𝑐
2 . In Corollary 1, we show that the sorting channel generates a 

non-monotonic effect on the variance of labor efficiency 𝑉𝑎𝑟 (𝜉). In contrast, the price 

channel, captured in the Roy model as the relative price of complex to routine tasks 

𝑤𝐶/𝑤𝑅, responds monotonically to technological change.29  

As we show in Appendix E, the combined effect of sorting and price 

monotonically increases the overall variance of wages, and the sorting channel generates 

a non-monotonic effect on the slope of this increase. Figure A6 illustrates that this result 

holds for plausible values of the elasticity of substitution between complex and routine 

tasks (1/(1 − 𝜙))and for the task-specific ability-scaling parameter 𝛿, which governs 

the extent to which innate ability translates into productivity in the routine task sector.  

In empirically relevant cases, technological change increases wage variance 

through both channels, though the strength and direction of the sorting effect vary with 

task structure and ability-technology interactions. 

 

 

5.2. Testing the Implications of the Model 

The predictions of our theoretical framework are supported by estimates of our statistical 

model, where the evolution of inequality is driven by both the skill price 

𝑝𝑡 (corresponding to the relative wage or skill premium 𝑤𝐶/𝑤𝑅), and the variance of the 

individual fixed effects 𝜎𝛼𝑐
2  (corresponding to the variance of the effective unit of labor 

𝑉𝑎𝑟 (𝜉)).  

The model delivers three additional testable implications: 

Implication 1: Within occupations, workers performing complex tasks earn more than 

workers performing routine tasks (following from Proposition 1 in Section 5.1). 

 

29 Specifically, 
𝑤𝐶

𝑤𝑅
increases in the complex task-augmenting productivity parameter ω, thereby 

raising the returns to performing complex tasks. 
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Implication 2: Changes in initial occupational complexity affect the variance of the 

combined price and productivity effects in a non-monotonic way, driven by the sorting 

channel (following from Propositions 2 and 3 / Corollary 1 in Section 5.1 and Simulation 

5.2) 

Implication 3: Larger increases in occupational complexity are associated with larger 

increases in the variance of the combined price–productivity effect (follows from 

Propositions 2 and 3; see Simulation 5.2) 

To operationalize these tests, we construct occupation-level measures of task 

complexity using the 1986 and 2006 BIBB/IAB surveys. These surveys include detailed 

questions about work content, such as the degree of task stipulation, repetitiveness, 

exposure to new tasks, and opportunities for improving existing processes. The use of 

these measures is motivated by Deming (2021), who links technological change to shifts 

toward problem-solving and decision-making tasks, which are associated with higher 

lifecycle earnings. Following our framework, we classify tasks as more complex when 

they are less stipulated, less repetitive, and when workers more frequently report engaging 

in new tasks or improving tasks. Responses are recoded to a [0,1] scale, with higher values 

indicating greater complexity. Because response categories differ slightly across survey 

waves, we harmonize the scales to ensure comparability. The resulting complexity index 

is computed at the individual level as the average of the recoded items.  

To connect our survey-based complexity measures to the administrative SIAB 

data used for estimating the income process, we impute occupational-level complexity 

values. Specifically, we compute weighted averages of individual complexity scores 

within each occupation-year cell using the BIBB survey sampling weights 𝜑𝑖: 

 

𝑐𝑗,𝑡 = ∑ 𝜑𝑖𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖,𝑗,𝑡
𝑗

 

 

Because complexity varies systematically with age and gender, we regress it on age, age 

squared, gender, and occupation dummies, and use the predicted value for men aged 25 

as an adjusted measure, which we refer to as adjusted complexity. This adjustment has 

little effect on the results—the correlation with the unadjusted measure is 0.98. We retain 

occupations with at least 20 observations per year in both the BIBB and SIAB samples 
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and linearly interpolate complexity between 1986 and 2006. Details on the recoding and 

harmonization procedures are provided in Appendix Table A1. 

To test Implication 1, we use data from the 2006 BIBB wave, which reports 

monthly wages (in €50 intervals) and actual hours worked. We restrict the sample to full-

time employees working at least 34 hours per week, noting that results are robust to 

omitting this cutoff. We regress log monthly wages on standardized measures of task 

complexity. As shown in Table A2, a one–standard deviation increase in complexity is 

associated with a 0.170 log-point increase in monthly wages. Including occupation fixed 

effects reduces the coefficient to roughly 0.07, indicating that part of the wage premium 

reflects differences in average complexity across occupations. Importantly, the remaining 

effect shows that even within the same occupation, greater task complexity is associated 

with higher pay. Adding controls for age, supervisory status, and gender attenuates the 

coefficient only slightly, leaving the within-occupation relationship intact. These results 

support Implication 1: task complexity predicts higher wages even within narrowly 

defined occupations. 

We next test Implications 2 and 3, which link changes in occupational complexity 

to the evolution of within-occupation inequality. Table A3 lists the five occupations with 

the largest and smallest increases in complexity. The top five occupations all originate 

from relatively low initial levels of complexity and are concentrated in manufacturing-

related fields. For instance, turners/machinists (Dreher) exhibit one of the strongest 

increases in complexity, consistent with the 1987 curriculum reform in Germany, which 

restructured machinist apprenticeships to include computer numerical control (CNC) 

programming. This reform substantially raised the cognitive demands of machinists by 

shifting the focus from manual tool handling to programming, monitoring, and quality 

control of automated processes.30 Among the occupations with the smallest changes, we 

find two distinct groups: highly complex professions such as chemists, engineers, and 

 

30 See Janssen and Mohrenweiser (2018) for evidence on the long-term effects of this reform. This 

observation also relates to our modeling choice, where 𝛼𝑐varies by cohort, reflecting the assumption 

that task-changing technologies are typically introduced for entry-level workers. See also Lipowski 

(2025) for a model in which young workers are trained on new technologies. 
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doctors, where there was limited scope for further increases, and occupations such as 

social workers, where technological change had little effect on task complexity over this 

period. 

Using log entry-level wages of 25-year-old workers in SIAB, we compute the 

within-occupation variance of wages as follows. For each year, we regress log wages on 

occupation and year fixed effects 

ln (𝑤𝑖𝑡𝑗) = ∑ ∑ ΓtΛj

𝑗𝑡

+ 𝑢𝑖𝑗𝑡 

The within-occupation variance in year 𝑡 is then given by the variance of the residuals 

𝜎̂𝑗,𝑡
2 = 𝑉𝑎𝑟̂(𝑢𝑖𝑗𝑡).   

We first provide graphical evidence on the relationship between occupational 

complexity, its evolution, and within-occupation inequality. To study the role of baseline 

complexity, we regress log within-occupation inequality ln (𝜎̂𝑗,𝑡
2 )and baseline complexity 

in 1986 𝑐𝑗,1986 separately on changes in complexity since 1986 𝑐𝑗,1986,𝑡 and baseline 

inequality in 1986 𝜎̂𝑗,1986
2 . The resulting residuals capture the components of inequality 

and baseline complexity orthogonal to both complexity growth and initial inequality. 

Next, to study the role of complexity changes, we regress log within-occupation 

inequality and changes in complexity since 1986 separately on baseline complexity and 

baseline within-occupation inequality. These residuals represent the components of 

inequality and complexity growth orthogonal to initial conditions (see Appendix F for 

details). We then collapse the data into 200 equal-sized bins of the residualized 

complexity measures and plot mean residualized inequality against mean residualized 

complexity, overlaying a locally weighted scatterplot smoother. 

Figure 13, Panel A, shows a positive association between residualized changes in 

complexity and within-occupation inequality, consistent with Implication 2. Panel B 

reveals a U-shaped relationship between residualized baseline complexity and inequality, 

consistent with Implication 3. 

As a second test of Implications 2 and 3, we estimate a first-difference 

specification: 

 

∆𝑙𝑛(𝜎̂𝑗
2)

𝑡,𝑡−1
= 𝛾0 + 𝛾1 ⋅ ∆𝑐𝑡,𝑡−1 + 𝛾2 ⋅ ∆𝑐𝑡,𝑡−1 ⋅ 𝑐𝑡−1 
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    +𝛾3 ⋅ ∆𝑐𝑡,𝑡−1 ⋅ (𝑐𝑡−1)2 +𝜖𝑖,𝑗,𝑡 

 

We regress year-to-year changes in within-occupational log wage variance on changes in 

occupational complexity, allowing the effect of changes to depend on the 

contemporaneous complexity level. The specification includes linear and quadratic 

interactions with the preceding year’s complexity. Occupations are weighted by the 

inverse of the estimated sampling variance of the within-occupation variance measure, so 

that groups with more precise inequality estimates receive greater weight in the regression. 

This corresponds to a feasible GLS correction for heteroskedasticity due to differences in 

occupational sample size.  

Table 1 presents regression results consistent with the model’s predictions. 

Increases in occupational complexity are associated with rising within-occupation wage 

variance, but the magnitude of this effect depends on baseline complexity. The positive 

coefficient 𝛾1on Δ𝑐indicates that greater task complexity generally amplifies inequality. 

The negative interaction with lagged complexity (Δ𝑐 ⋅ 𝑐) and the positive coefficient on 

its square (Δ𝑐 ⋅ 𝑐2) imply a U-shaped pattern: the effect of complexity growth on wage 

variance is strongest for occupations starting from very low or very high complexity and 

weakest at intermediate levels. This pattern aligns with the Roy model’s prediction that 

technological change magnifies inequality most at the extremes of the task distribution. 

Using equal weighting across occupations (column 1) yields less precise estimates 

than the feasible GLS specification, which downweights occupations with small samples, 

but the overall pattern remains. However, differencing and collapsing substantially reduce 

the effective sample size, and the specification is relatively parameterized given available 

variation. As a result, the coefficients should be interpreted as illustrative evidence of the 

theoretical mechanism rather than precise estimates of effect magnitudes. 

 

6. Conclusion 

This paper investigates the determinants of cross-sectional and lifecycle earnings 

inequality using a lifecycle earnings process model that incorporates earnings mobility 

and non-employment risks across birth cohorts and over time. The estimated wage 
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process accounts for multiple sources of non-stationarity, where the distribution of 

individual fixed effects is cohort-dependent, while skill prices and the distribution of 

other shocks vary by calendar year. Additionally, we estimate employment-non-

employment transitions to capture the correlation between wages and job insecurity, 

which is crucial for understanding lifecycle earnings and may also influence cross-

sectional inequality through selection effects. Using our statistical model, we decompose 

the evolution of inequality into its underlying determinants, enabling a direct comparison 

between lifecycle (cohort-specific) and cross-sectional (year-specific) inequality. 

A key finding of our analysis is that the dominant determinant in the rise of both 

cross-sectional and lifecycle inequality is the change in the price and variance of 

individual fixed effects. These factors equally explain the trends in both measures of 

inequality. Our analysis also highlights the crucial role of non-employment, where job 

instability has significantly impacted lifecycle earnings among low-wage workers. 

Conversely, selection into employment—which could potentially influence the 

measurement of cross-sectional inequality—turns out to be unimportant. Consequently, 

failing to account for employment risk can lead to misleading welfare implications when 

investigating lifecycle inequality, as it plays a significant role in shaping long-term 

earnings disparities. 

To explain how the variance of individual productivity can increase without 

changing the underlying talent distribution, we develop a Roy model incorporating skill-

biased technological change, which amplifies wage inequality by strengthening the 

relationship between ability and realized productivity. This leads to greater sorting of 

workers into tasks where their abilities are most productive, contributing to rising 

inequality without changes in the underlying distribution of ability.  

We empirically test key predictions of our model and find evidence supporting the 

proposed mechanisms. Our findings contribute to the literature on wage inequality by 

providing new insights into the link between cross-sectional and lifecycle inequality and 

its interaction with technological change.   
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Figure 1 Distribution of wages and lifecycle earnings 

  

(a)  

Distribution of cross-sectional wage  

in our sample 

(b) 

Distribution of cross-sectional wage 

 for West German males 

  

(c)  

Distribution of wage at age 25 

(d) 

Distribution of lifecycle earnings across cohorts 

 

Note: Panel (a) shows the distribution of log wages of workers across calendar years in our sample aged 25 to 34. Panel 

(b) shows the distribution of log wages for West German males. Panel (c) shows the distribution of log wages of workers 

at age 25 in our sample. Panel (d) shows the distribution of our measure of lifecycle earnings calculated as the total 

earnings from age 25 to 34. 

Source: Own calculations based on IAB data 
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Figure 2 Unemployment 

 

(a)  

Unemployment Rate (15 Years or over) 

 

(b)  

Total duration of employment over wage distribution at age 25 

 

Note: Panel (a) shows seasonally adjusted quarterly unemployment rate for 15 years or over for Germany. Panel (b) 

shows the mean and median of total duration of non-employment in each Vintile (20 bins) over the wage distribution 

at age 25. For example, the first bin corresponds to the total duration of employment for the earners below the 5% 

percentile of wage at age 25 

Source: Panel (a): OECD (2024). Panel (b): Own calculations based on IAB data 
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Figure 3 Median log wage across cohorts and lifecycle 

and earnings mobility across cohorts  

 

(a)  

Median log wage across cohorts and lifecycle 

 

(b)  

Shorrocks Index of Variance in Earnings 

 

Note: Panel (a) shows the log median wage for different labor market entry cohorts at different ages. The solid lines 

with points allow us to follow the median log wage for a given age across calendar year. For example, the black dotted 

line follows the median wages of workers at age 25 across years. The dotted lines allow to follow lifecycle profiles of 

the median log wage of a given cohort. For example, the first dotted line from the left hand allows to track the log wage 

of the cohort born in 1960 at age 25 in year 1985, age 30 in year 1990 and so on. Panel (b) shows the Shorrocks index 

of the variance of earnings across birth cohort.  

Source: Own calculations based on IAB data 
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Figure 4 Parameter estimates 

  

(a) Variance of individual FE 

𝝈𝜶𝒄
𝟐  

(b) Skill price 

𝒑𝒕 

f   

(c) Persistency of AR(1) process 

𝝆𝒕 

(d) Variance of persistent shock (AR(1) innovation) 

𝝈𝜼𝒕
𝟐  

 

(e) Variance of transitory shock 

𝝈𝝐𝒕
𝟐  

 

Note: The figure shows the estimated parameters of the stochastic wage growth model according to Equations 1 and 2 

for West German workers born between 1950-1994. All parameters are indexed by calendar year, expect the variance 

of individual fixed effects  𝜎𝛼𝑐
2  which varies by cohort. For estimation three cohorts and calendar years are group 

together respectively. Estimation was performed by minimization of the Euklidian norm of the covariance matrix of 

residual wages according to Equation 3. Shaded areas represent 90% confidence intervals. 

Source: Own calculations based on IAB data 
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Figure 5 Parameter estimates: Non-employment duration  

 

Note: This figure presents the distribution of the estimated non-employment duration parameters 𝜆 (left scale) for 

individuals who are non-employed in period 𝑡. The numerical values corresponds to the fraction of a year the individual 

is non-employed. The parameter 𝜆 represents the hazard rate of transitioning back to employment and is estimated 

separately basd on employment status in the previous period 𝑡 − 1. The blue distribution corresponds to individuals 

who were unemployed in 𝑡 − 1., while the red distribution corresponds to those who were employed in 𝑡 − 1. The 

solid line shows the expected non-employment duration, expressed as a fraction of a year, implied by each lambda 

value. Non-employment duration follows a truncated exponential distribution, where smaller values of lambda indicate 

longer expected durations out of employment. Estimates are constructed using individual-level data gruped by prior 

year’s wage and employment status according to Equation 5. 

Source: Own calculations based on IAB data 
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Figure 6 Counterfactual simulation: Cross-sectional inequality (p90-p10 ratio) 

 

Note: The figure shows the p90-p10-ratio of the distribution of the cross-sectional wages across calendar years for 

different simulated counterfactual scenarios described in section 4.2 The Cross-sectional wage distribution in calendar 

year t consists of a rolling sample of the workers in our sample between age 25 and 34 at the given year. Data is 

calculated using the empirical distribution from our sample. Wages for CF1 to CF7 are simulated from a normal 

distribution with mean zero and variances according to our estimated parameters and employment/non-employment 

probabilities according to Equations (4) and (5). CF1 fixes all parameters at base year 1985 except the observable wage 

component 𝜇𝑐𝑒𝑎𝑡. CF2 allows the observables and additionally the variance of skill 𝜎𝛼𝑐
2  vary across cohort and time. 

CF3 allows the observables and the price for skill 𝑝𝑡 vary across time (but not 𝜎𝛼𝑐
2 ). CF4 allows observables and both 

variance of skill 𝜎𝛼𝑐
2 and price for skill 𝑝𝑡 vary. CF5 allows observables, variance and price of skill as well as the 

components of the AR(1) process (the persistent shock), 𝜌𝑡 and 𝜎𝜂𝑡
2 , vary. In CF6 observables, variance and price of 

skill, the components of the AR(1) process (the persistent shock) and additionally the variance of the transitory shock 

𝜎𝜖𝑡
2  are allowed to vary. CF7 additionally lets the parameters governing the employment process (non-employment 

probabilities and duration) to vary and corresponds to our full model. 

Source: Own calculations based on IAB data 
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Figure 7 Counterfactual simulation: Lifecycle inequality (p90-p10 ratio) 

 

Note: The figure shows the p90-p10-ratio of the distribution of the lifecycle earnings across birth cohort for different 

simulated counterfactual scenarios described in section 4.2 The Lifecycle Earnings for workers in cohort c are 

calculated as the total earnings from age 25 to 34. The sample is restricted to individuals with at least 3 years of positive 

earnings between age 25 to age 34. Earnings are set as yearly wages in the case of full-time employment and 0 otherwise. 

Data is calculated using the empirical distribution from our sample. Wages and Earnings for CF1 to CF7 are simulated 

from a normal distribution with mean zero and variances according to our estimated parameters and employment/non-

employment probabilities according to Equations (4) and (5). CF1 fixes all parameters at base year 1985 except the 

observable wage component 𝜇𝑐𝑒𝑎𝑡. CF2 allows the observables and additionally the variance of skill 𝜎𝛼𝑐
2  vary across 

cohort and time. CF3 allows the observables and the price for skill 𝑝𝑡 vary across time (but not 𝜎𝛼𝑐
2 ). CF4 allows 

observables and both variance of skill 𝜎𝛼𝑐
2 and price for skill 𝑝𝑡 vary. CF5 allows observables, variance and price of 

skill as well as the components of the AR(1) process (the persistent shock), 𝜌𝑡 and 𝜎𝜂𝑡
2 , vary. In CF6 observables, 

variance and price of skill, the components of the AR(1) process (the persistent shock) and additionally the variance of 

the transitory shock 𝜎𝜖𝑡
2  are allowed to vary. CF7 additionally lets the parameters governing the employment process 

(non-employment probabilities and duration) to vary and corresponds to our full model. 

Source: Own calculations based on IAB data 
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Figure 8 Counterfactual simulation: p10 and p90 of lifecycle earnings 

 

(a) p90 

 

(b) p10 

 

Note: The figure shows the 10th and 90th percentile of the distribution of the lifecycle earnings across birth cohort for 

different simulated counterfactual scenarios described in section 4.2 The Lifecycle Earnings for workers in cohort c are 

calculated as the total earnings from age 25 to 34. The sample is restricted to individuals with at least 3 years of positive 

earnings between age 25 to age 34. Earnings are set as yearly wages in the case of full-time employment and 0 otherwise. 

Data is calculated using the empirical distribution from our sample. Wages and Earnings for CF1 to CF7 are simulated 

from a normal distribution with mean zero and variances according to our estimated parameters and employment/non-

employment probabilities according to Equations (4) and (5). CF1 fixes all parameters at base year 1985 except the 

observable wage component 𝜇𝑐𝑒𝑎𝑡. CF2 allows the observables and additionally the variance of skill 𝜎𝛼𝑐
2  vary across 

cohort and time. CF3 allows the observables and the price for skill 𝑝𝑡 vary across time (but not 𝜎𝛼𝑐
2 ). CF4 allows 

observables and both variance of skill 𝜎𝛼𝑐
2 and price for skill 𝑝𝑡 vary. CF5 allows observables, variance and price of 

skill as well as the components of the AR(1) process (the persistent shock), 𝜌𝑡 and 𝜎𝜂𝑡
2 , vary. In CF6 observables, 

variance and price of skill, the components of the AR(1) process (the persistent shock) and additionally the variance of 

the transitory shock 𝜎𝜖𝑡
2  are allowed to vary. CF7 additionally lets the parameters governing the employment process 

(non-employment probabilities and duration) to vary and corresponds to our full model. 

Source: Own calculations based on IAB data 
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Figure 9: Counterfactual simulation: Shorrocks Index of Variance in Earnings 

 

Note: The figure shows the Shorrocks index of the variance of earnings across birth cohort for different simulated 

counterfactual scenarios described in section 4.2. The sample is restricted to individuals with at least 3 years of positive 

earnings between age 25 to age 34. Earnings are set as yearly wages in the case of full-time employment and 0 otherwise. 

Data is calculated using the empirical distribution from our sample. Wages and Earnings for CF1 to CF7 are simulated 

from a normal distribution with mean zero and variances according to our estimated parameters and employment/non-

employment probabilities according to Equations (4) and (5). CF1 fixes all parameters at base year 1985 except the 

observable wage component 𝜇𝑐𝑒𝑎𝑡. CF2 allows the observables and additionally the variance of skill 𝜎𝛼𝑐
2  vary across 

cohort and time. CF3 allows the observables and the price for skill 𝑝𝑡 vary across time (but not 𝜎𝛼𝑐
2 ). CF4 allows 

observables and both variance of skill 𝜎𝛼𝑐
2 and price for skill 𝑝𝑡 vary. CF5 allows observables, variance and price of 

skill as well as the components of the AR(1) process (the persistent shock), 𝜌𝑡 and 𝜎𝜂𝑡
2 , vary. In CF6 observables, 

variance and price of skill, the components of the AR(1) process (the persistent shock) and additionally the variance of 

the transitory shock 𝜎𝜖𝑡
2  are allowed to vary. CF7 additionally lets the parameters governing the employment process 

(non-employment probabilities and duration) to vary and corresponds to our full model. 

Source: Own calculations based on IAB data 
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Figure 10 Comparative advantage in complex and routine sectors by skill 

 

Note: The figure shows the effective unit of labor for complex and routine tasks by skill level. 

Source: Own illustration 
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Figure 11 Job switching of the marginal worker under different levels of technology 

 

(a) Low level of technology 

 

 

(b) Moderate level of technology 

 

 

(c) High level of technology 

 

Note: The figure shows the effective unit of labor across skill leave. Each dot represents one worker. The orange dots 

represent the effective unit of labor of the marginal worker with skill 𝑆∗  depending on whether he works in the 

complex or routine task sector. Note that the complex workers payoff working in complex tasks is equal working in 

routine tasks but his effective unit of labor differs. 

Source: Own illustration 
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Figure 12 Between- and within-occupation variance of wage at age 25 

 

Note: The figure shows the evolution of the variance in log wages of workers at age 25 across birth year decomposed 

into changes between and within 120 occupations. 

Source: Own calculations based on IAB data 
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Figure 13 Residualized Inequality and Complexity 

 

(a) Residualized Change in Complexity  

 

 

(b) Residualized Complexity in 1986 

 

Note: The figure plots residualized within-occupation inequality against residualized measures of occupational 

complexity. In Panel A, both inequality and baseline complexity (1986) are residualized on subsequent changes in 

complexity (1986–2006) and on baseline inequality (1986). In Panel B, inequality and changes in complexity (1986–

2006) are residualized on baseline complexity (1986) and baseline inequality (1986). Data are collapsed to the 

occupation–year level. Occupations are grouped into equal-sized quantile bins of the residualized complexity measure 

(200 bins). Each point shows the weighted mean of residualized inequality and residualized complexity within a bin, 

with weights equal to the number of observations in the underlying occupation–year cells. The solid line is a lowess 

smoother (bandwidth 0.8). 

Source: Own calculations based on IAB and BIBB data 
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Tables 
 

 
Table 1 Regression Results Within-occupational variance on complexity 

 
  

(1) 

 

(2) 

 

(3) 

Dep. Variable log wage log wage log wage 

∆𝑐𝑡,𝑡−1 13.530 

(9.216) 

29.518*** 

(10.548) 

46.392*** 

(13.986) 

∆𝑐𝑡,𝑡−1 ⋅ 𝑐𝑡−1 -84.048* 

(45.748) 

-175.042*** 

(56.468) 

-256.068*** 

(72.367) 

∆𝑐𝑡,𝑡−1 ⋅ 𝑐𝑡−1
2  103.665* 

(54.289) 

213.244*** 

(67.990) 

305.201*** 

(84.189) 

Constant 0.036*** 

(0.011) 

0.037*** 

(0.011) 

0.023** 

(0.009) 

𝑅2 0.001 0.004 0.003 

Observations 1,038 1,038 1,038 

Occ. Clusters 75 75 75 

Weighting Raw FGLS FGLS 

Complexity 

Measure 

Adjusted Adjusted Unadjusted 

 
Note: This table report the result of the regression of year-to-year changes in the variance of within-occupational log 

wages on change in complexity. We restrict to occupations for which we observe at least 20 observations in 1986 and 

2006. 

Source: Own calculations based on IAB and BIBB data 
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Appendix 

A Simulation 

To test how well our model fits the data and how the components of our both our earnings 

model contribute to the evolution of inequality we simulate our data. Our simulation is 

performed in 4 steps. 

 

1. In the first step, we replicate the demographic composition, in our case the educational 

distribution and the cohort size at age 25. The number of observations in the 

simulation to be ten times larger than the original cohort size to minimize simulation 

errors. 

2. In the second step we simulate for all workers the 10 wage observations ln 𝑤𝑖𝑐𝑒𝑎𝑡 

from age 25 to 34 (we can call this potential wage). To do this we simulate separately 

the three components of which residual wages are composed according to Equation 

(1) and (2): the FE 𝑝𝑡𝛼𝑖𝑐, the persistent shock 𝑧𝑖𝑎𝑡 and the transitory shock 𝜖𝑖𝑡. To 

simulate the three wage components, we draw the components from a normal 

distribution with mean zero (because the components are residual wages) and the 

variance depending on the estimated parameters of our model (Figure 4). The 

simulated FE 𝑝𝑡𝛼𝑖𝑐 depends on the variance of the FE in the workers birth cohort 

𝜎𝛼𝑐
2  as well as the skill price 𝑝𝑡 for the respective year the wage should be generated. 

For example, if we compute the fixed effect for a worker born in 1950 at age 30, we 

use the skill price in year 1980 and the variance of cohort 1950: 𝑝1980𝛼𝑖1950. The 

variance of the transitory shock 𝜎𝜖𝑡
2  depends on the year in which the wage of the 

worker should be generated. The permanent shock is computed sequentially: first we 

compute the wage innovation at age 25. Then at age 26, the depreciated wage 

innovation from age 25 is added to the new wage innovation at age 26 which is based 

on the variance estimate of the new year. For example, for a worker aged 26 in year 

1981 we compute: 𝑧𝑖,26,1981 = 𝜌1981𝑧𝑖,25,1980 +  𝜂𝑖1981. Finally, we also add the non-

stochastic component of wages 𝜇𝑐𝑒𝑎𝑡 which is based on the average wage in each 

interacted cell of the observables age, year and education. After this procedure, every 

worker now has 10 simulated observations of a potential wage from age 25 to 34. 
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3. In the second step, we generate for each worker the employment status based on his 

potential wage from step 2. According to equation (4) each worker faces in every of 

his 10 periods a different probability to become unemployed Pr(𝑈𝑖𝑎𝑡 =

1 |𝑎, 𝑤𝑖,𝑡−1, 𝑈𝑖,𝑡−1)  which depends on a) the calendar year 𝑡  b) his age 𝑎  c) the 

wage quartile of his potential wage in the last period 𝑤𝑖,𝑡−1 and d) whether he was 

employed in the last period or not 𝑈𝑖,𝑡−1 . Using these probabilities and the 

information of the potential wage from step 2 (which gives us the information in 

which wage quartile the worker is), we simulate sequentially for each worker if he 

will be unemployed from age 25 to 34.31 If the worker is simulated to be unemployed 

in a given year, then we also draw their length of non-employment  ν̈𝑖𝑎𝑡 from the 

truncated exponential distribution according to Equation (6), The estimate for 

Equation (6) was computed from the data. In some cases, an unemployed worker will 

be unemployed for the full year. In that case we exchange his potential earnings (based 

on his potential wage we computed in step 1) with 0. The worker could however also 

be simulated to be 75% of the year unemployed. We then exchange his potential 

earnings from step 1 for the fraction of the year with 0 according to 

(1 −  𝜈̈𝑖𝑡) exp(𝜇𝑐𝑒𝑎𝑡 + 𝑝𝑡𝛼𝑖𝑐 + 𝑧𝑖𝑎𝑡 + 𝜖𝑖𝑡) . For example, a worker with potential 

wage that equals 20.000 EUR earnings in a year who is 75% unemployed he is 

simulated to receive earnings of 5000 EUR. What happens to workers who are 

unemployed in the following period? We draw again from the probability distribution 

to simulate if he is employed or unemployed in the next year. Non-employment in our 

model can be persistent, because a worker faces a different (higher) probability to be 

unemployed if they were unemployed already in the previous period as can be seen 

in Figure 5. If the unemployed worker becomes employed again, he goes back to his 

original wage path which we calculated in step 2.  

4. After this procedure we have for each individual 10 simulated values (for age 25-34) 

of a potential log wages ln (𝑤𝑖𝑐𝑒𝑎𝑡)̂  for which some could be missing if the person 

 

31 We simulate this sequentially, as the probability to become unemployed depends on the 

employment status in the previous period. 
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is unemployed32 . and 10 simulated values of annual earnings 𝑒̂𝑖𝑡  for which some 

could be 0 if the person is unemployed for the full year. We then sum up the 10 years 

of earnings to arrive at the total accumulated earnings over the period. Here we also 

condition on workers whose accumulated working days are at least the equivalent of 

3 out of 10 years to ensure we only consider worker with a minimum of attachment 

to the labor market. 

 

B Selection into Non-employment 

In principle, changing non-employment rates could affect the cross-sectional 

distribution of wages if selection into non-employment is sufficiently based on the wage 

and we explicitly consider this in our employment process. In this section we perform 

two additional decompositions to explain why in our counterfactual decomposition in 

Section 4.2 the employment margin - despite large changes in the non-employment rate 

and positive correlation between non-employment and wages - does not affect the 

evolution of cross-sectional wage inequality. Looking at the non-employment probability 

across the potential wage decile in Figure A2 we note that the probability to become 

unemployed is considerably higher for low wage earners than for high wage earners. We 

also note that the slope of this relationship becomes more negative in years of high 

unemployment. However, the question is, if this difference in non-employment 

probability across wages is strong enough to influence the distribution of wages when the 

non-unemployment probability varies across years.  

To understand this, we perform two additional counterfactual scenarios of our 

employment process. Our employment process estimates for each simulated individual 

the employment status stochastically in each period based on his age, year and 

importantly his potential wage decile. This means workers with lower simulated wage 

having a higher probability of non-employment than simulated individuals with higher 

simulated wage.  

We now change this scenario to account for the two possible extremes which are 

 

32 In that case we do not consider it in the cross-section. 
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illustrated in Figure A3 for an non-employment rate of 10%:  

The first scenario is a scenario of full or perfect selection into non-employment. 

In this scenario the non-employment in a given year (determined by the aggregate non-

unemployment rate in the data) is fully faced by the lowest earners (the individuals in our 

simulation which have the lowest potential wage in our first step estimation). Those 

individuals are assigned 0 earnings and missing wage and they are not considered in the 

cross-sectional wage inequality. In this scenario an increasing aggregate non-employment 

rate across years should ceteris paribus decrease the cross-sectional wage inequality 

because with more non-employment more low-wage earners leave the wage distribution. 

In the second scenario, The No Selection Scenario, non-employment does not 

depend on the wage and changes in the non-employment rate should not affect the cross-

sectional wage distribution at all.  

Figure A4 shows the result of this counterfactual decomposition. We see that if 

the labor market operated under a system of perfect selection, where the lowest earners 

were systematically sorted into non-employment, cross-sectional inequality would (i) 

have been lower on average during the period we examine, and (ii) would have continued 

to rise after 2010 as non-employment rates declined and the lowest wage earners re-

entered the wage distribution. Furthermore, our analysis shows that both the full model 

and the data closely align with a No Selection scenario, suggesting that the differences in 

non-employment probabilities along the wage distribution as we saw in Figure B1 are too 

small to significantly impact the cross-sectional distribution. Consequently, the 

employment margin has a minimal effect on shaping cross-sectional inequality during the 

period we study. 

C Proof of Propositions 

To show Proposition 1, note that the maximum earnings among workers in the 

routine sector are exp(𝛿𝑆∗) 𝑤𝑅, whereas the minimum earnings among workers in the 

complex sector are exp(𝑆∗) 𝑤𝐶, since the effective unit of labor is increasing in ability 

𝑆 and workers engage in complex tasks if and only if 𝑆 ≥ 𝑆∗. Considering that 

exp(𝛿𝑆∗) 𝑤𝑅 =  exp(𝑆∗) 𝑤𝐶 by the definition of 𝑆∗, we observe that for any 𝑆0 ≤

𝑆∗ ≤ 𝑆1, 
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exp(𝛿𝑆0) 𝑤𝑅 ≤  exp(𝛿𝑆∗) 𝑤𝑅 =  exp(𝑆∗) 𝑤𝐶 ≤ exp(𝑆1) 𝑤𝐶 . ∎ 

To show Proposition 2, note that 𝑆∗ =
1

1−𝛿
ln

𝑤𝑅

𝑤𝐶
, and thus, 

𝜕𝑆∗

𝜕𝜔
< 0 ⇔

𝜕

𝜕𝜔

𝑤𝐶

𝑤𝑅
>

0. From equation (12), we have 

[
Φ(𝑧 − 𝛿𝜎)

1 −  Φ(𝑧 − 𝜎)
⋅

𝜕

𝜕𝑧

1 − Φ(𝑧 − 𝜎)

Φ(𝑧 − 𝛿𝜎)
⋅

1

𝜎
−

1 −  𝛿

1 − 𝜑
]

𝜕𝑆∗

𝜕𝜔
=

1

1 − 𝜑

𝜕

𝜕𝜔
ln

𝜔

1 − 𝜔
 > 0, 

where 𝑧 =  
𝑆∗−𝜇

𝜎
. Since 

𝜕

𝜕𝑧

1−Φ(𝑧−𝜎)

Φ(𝑧−𝛿𝜎)
< 0 and 

Φ(𝑧 −𝛿𝜎)

1− Φ(𝑧−𝜎)
⋅

𝜕

𝜕𝑧

1−Φ(𝑧−𝜎)

Φ(𝑧−𝛿𝜎)
⋅

1

𝜎
−

1− 𝛿

1−𝜑
< 0, it 

follows that 
𝜕𝑆∗

𝜕𝜔
< 0. ∎ 

To show Proposition 3, we first show that the expectation of the effective unit of 

labor is inverted U-shaped and peaked when 𝑆∗ = 0. In fact,  

𝐸[𝜉(𝑆; 𝑆∗)] = ∫ exp(𝑠) 𝑓𝑆(𝑠)𝑑𝑠
∞

𝑆∗

+  ∫ exp(𝛿𝑠) 𝑓𝑆(𝑠)𝑑𝑠
𝑆∗

−∞

, 

and hence, 

𝜕𝐸[𝜉(𝑆; 𝑆∗)]

𝜕𝑆∗
= 𝑓𝑆(𝑆∗)[exp(𝛿𝑆∗) − exp(𝑆∗)] < 0 ⇔ 𝑆∗ > 0. (𝐶1) 

In addition, it follows that 

𝐸[𝜉(𝑆; 0)] > lim
𝑆∗→−∞

𝐸[𝜉(𝑆; 𝑆∗)] = 𝐸[exp(𝑆∗)] = exp (
𝜎2

2
) ≥ 1. (𝐶2) 

Note also that 𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) = 𝐸[𝜉2(𝑆; 𝑆∗)] − 𝐸[𝜉(𝑆; 𝑆∗)]2, and 𝐸[𝜉2(𝑆; 𝑆∗)] =

 ∫ exp2(𝑠) 𝑓𝑆(𝑠)𝑑𝑠
∞

𝑆∗ + ∫ exp2(𝛿𝑠) 𝑓𝑆(𝑠)𝑑𝑠
𝑆∗

−∞
. Thus, we observe 

𝑑

𝑑𝑆∗
𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗))

= 𝑓𝑆(𝑆∗)[exp(𝛿𝑆∗) − exp(𝑆∗)][exp(𝛿𝑆∗) + exp(𝑆∗) − 2 𝐸[𝜉(𝑆; 𝑆∗)]]. 

Proposition 3.2 immediately follows from this equation since if 𝑆∗ = 0, we 

have exp(𝛿𝑆∗) − exp(𝑆∗) = 0. ∎ 

We next show Proposition 3.1. To this end, define 𝑔(𝑆∗) =  exp(𝛿𝑆∗) +

exp(𝑆∗) − 2 𝐸[𝜉(𝑆; 𝑆∗)]. For 𝑆∗ > 0, since exp(𝛿𝑆∗) − exp(𝑆∗) < 0, and equation 

(B1) implies that 𝑔(𝑆∗) is monotonically increasing, 
𝑑

𝑑𝑆∗ 𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) is 

monotonically decreasing. Hence, Proposition 3.1 holds if we show that there 

exists 𝑆0 > 0 such that 𝑔(𝑆0) = 0, or equivalently, 
exp(𝛿𝑆∗)+exp(𝑆∗)

2
=  𝐸[𝜉(𝑆; 𝑆∗)]. 

Since the left-hand side is continuous and monotonically increasing from 1 to ∞ for 
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𝑆∗ > 0, and since the right-hand side is continuous and monotonically decreasing for 

𝑆∗ > 0 with 1 <  𝐸[𝜉(𝑆; 0)] < ∞ from equation (C2), these two lines cross at one 

point 𝑆0. ∎ 

For Proposition 3.3, we next consider the case with 𝑆∗ < 0, and since 

exp(𝛿𝑆∗) − exp(𝑆∗) > 0 in this case, it is sufficient to show 𝑔(𝑆∗) < 0. Given that 

0 <
exp(𝛿𝑆∗) + exp(𝑆∗)

2
< 1 for 𝑆∗ < 0, equations (C1) and (C2) imply that 

exp(𝛿𝑆∗) + exp(𝑆∗)

2
< 1 ≤ lim

𝑆∗→−∞
𝐸[𝜉(𝑆; 𝑆∗)] < 𝐸[𝜉(𝑆; 𝑆∗)], 

and therefore, 𝑔(𝑆∗) < 0 for 𝑆∗ < 0. ∎ 

 Finally, we show Corollary 1. Since 

𝜕

𝜕𝜔
𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) =  

𝑑

𝑑 𝑆∗
 𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) ⋅  

𝜕

𝜕𝜔
𝑆∗, 

and 
𝜕

𝜕𝜔
𝑆∗ < 0  from Proposition 2, the sign of 

𝜕

𝜕𝜔
𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗))  is opposite to 

𝑑

𝑑 𝑆∗  𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) . Therefore, given Proposition 3, it is sufficient to show that the 

equilibrium threshold 𝑆∗ = 𝑆∗(𝜔, 𝜑, 𝜇, 𝜎, 𝛿)  ranges (−∞, ∞)  for 𝜔 ∈ (0, 1) . To 

this end. we first show that 𝑆∗(𝜔, 𝜑, 𝜇, 𝜎, 𝛿)  is continuous and monotonically 

decreasing in 𝜔. Rewriting equation (12) as 

Ξ(𝑆∗, 𝜑, 𝜇, 𝜎, 𝛿) = (1 − 𝜑) [(1 − 𝛿) 𝜇 +
(1 −  𝛿2)𝜎2

2
+  ln

1 −  Φ (
𝑆∗ − 𝜇

𝜎 − 𝜎)

Φ (
𝑆∗ − 𝜇

𝜎 − 𝛿𝜎)
−

(1 − 𝛿)

1 − 𝜑
𝑆∗]

= ln
𝜔

1 − 𝜔
, (𝐶3)

 

we note that Ξ(𝑆∗, 𝜑, 𝜇, 𝜎, 𝛿) is continuous and monotonically decreasing in 𝑆∗. Hence, 

there exists a continuous and monotonically decreasing inverse function 

Ξ−1(𝜔, 𝜑, 𝜇, 𝜎, 𝛿) = 𝑆∗(𝜔, 𝜑, 𝜇, 𝜎, 𝛿). In addition, it is evident from equation (C3) that 

lim
𝜔→0

𝑆∗(𝜔, 𝜑, 𝜇, 𝜎, 𝛿) = ∞  and lim
𝜔→1

𝑆∗(𝜔, 𝜑, 𝜇, 𝜎, 𝛿) = −∞ . Therefore, given the 

continuity and monotonicity, 𝑆∗(𝜔, 𝜑, 𝜇, 𝜎, 𝛿) ranges (−∞, ∞) for 𝜔 ∈ (0, 1). ∎ 

D Model extension 

This section generalizes our Roy model. In particular, we relax the distributional 

assumption on workers’ skill and the functional form assumption on the effective unit of 
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labor. For skill distribution, we assume that 𝑆 has the cumulative distribution function 

𝐹𝑆(⋅) with support 𝒮. We assume that inf 𝒮 < 0 < sup 𝒮, so that there are workers who 

are more productive in routine (complex) tasks. We denote the effective unit of labor of a 

worker with ability 𝑆 by 𝜓(𝑆) for complex tasks and 𝜓(𝛿𝑆) for routine tasks, where 

𝜓: 𝒮 → ℝ++
2  is continuous and monotonically increasing on 𝒮. In addition, we assume 

that the first and second moments of 𝜓(𝑆) exist, and ℎ(𝑆; 𝛿) =  
𝜓(𝑆)

𝜓(𝛿𝑆)
 is monotonically 

increasing for all 𝑆 ∈ 𝒮, which serves as the single crossing condition. In fact, the worker 

chooses routine tasks if and only if  

𝜓(𝑆)𝑤𝐶 ≥ 𝜓(𝛿𝑆)𝑤𝑅, ∴ 𝑆 ≥ 𝑆∗ = ℎ−1 (
𝑤𝑅

𝑤𝐶
; 𝛿) , (𝐷1) 

where ℎ−1(⋅ ; 𝛿) exists due to the monotonicity of ℎ(⋅ ; 𝛿). Then, the effective unit of 

aggregate labor supply to each sector is 

𝐶𝑆 =  ∫ 𝜓(𝑆)𝑑𝐹𝑆

sup 𝒮

𝑆∗

, 𝑅𝑆 =  ∫ 𝜓(𝛿𝑆)𝑑𝐹𝑆

𝑆∗

inf 𝑆

. (𝐷2) 

The equilibrium is (𝐶𝐷 , 𝑅𝐷 , 𝐶𝑆, 𝑅𝑆, 𝑆∗,
𝑤𝐶

𝑤𝑅
) that satisfies equations (8), (D1) and 

(D2) and the market clearing conditions, 𝐶𝐷 = 𝐶𝑆  and 𝑅𝐷 = 𝑅𝑆 . The existence and 

uniqueness of the equilibrium are shown similarly to our baseline model in Section 5.1. 

Furthermore, it is obvious that Proposition 2 holds with almost identical proof. That is, 

we observe that 
𝜕

𝜕𝜔

𝑤𝐶

𝑤𝑅
> 0 and 

𝜕

𝜕𝜔
𝑆∗ < 0. We now show the non-monotonic nature of 

the variance of effective unit of labor: 

Proposition 4 

Suppose that inf
𝑆∈𝒮

𝜓(𝛿𝑆) < 𝐸[𝜓(𝑆)] and 𝜉(0) ≠  𝐸[𝜓(𝑆; 0)]. Then, the variance of the 

realized effective unit of  𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) is non-monotonic in 𝑆∗. 

Proof 

Note first that with similar argument in our baseline model, we observe that 𝐸[𝜉(𝑆; 𝑆∗)] 

is inverted U-shaped with peak at 𝑆∗ = 0, and the derivative of the variance is given by 

𝑑

𝑑𝑆∗
𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) = 𝑓𝑆(𝑆∗)[𝜓(𝛿𝑆∗) − 𝜓(𝑆∗)][𝜓(𝛿𝑆∗) + 𝜓(𝑆∗) − 2 𝐸[𝜉(𝑆; 𝑆∗)]]. 

We first show that the variance is decreasing when 𝑆∗  is sufficiently small or large. 

Define 𝑔(𝑆∗) = 𝜓(𝛿𝑆∗) + 𝜓(𝑆∗) − 2 𝐸[𝜉(𝑆; 𝑆∗)]. Since 𝜓(𝑆) is increasing in 𝑆, we 
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have 

𝑔(inf 𝒮) =  
𝜓(𝛿 inf 𝒮) + 𝜓(inf 𝒮)

2
−  𝐸[𝜉(𝑆; inf 𝒮)] < 𝜓(𝛿 inf 𝒮) − 𝐸[𝜓(𝑆)] < 0, 

where 𝐸[𝜉(𝑆; inf 𝒮)] = 𝐸[𝜓(𝑆)]  by the definition of 𝜉(⋅)  and the last inequality 

follows from the assumption of Proposition 3. As 𝑔(⋅) is continuous, there exists 𝑆 ∈

𝒮 ∩ ℝ− such that for all 𝑆∗ ≤ 𝑆, 𝑔(𝑆∗) < 0, and thereby, 
𝑑

𝑑𝑆∗ 𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) < 0. On 

the other hand, since 𝜓(𝑆) is increasing, we observe 𝐸[𝜓(𝑆; sup 𝒮)] =  𝐸[𝜓(𝛿𝑆)] <

sup
𝑆∗∈𝒮

𝜓(𝛿𝑆∗) ≤  sup
𝑆∗∈𝒮

𝜓(𝛿𝑆∗)+𝜓(𝑆∗)

2
, implying 𝑔(sup 𝒮) > 0. So, there exists  𝑆̅ ∈ 𝒮 ∩ ℝ+ 

such that for all  𝑆∗ ≥  𝑆̅, 𝑔(𝑆∗) > 0, and 
𝑑

𝑑𝑆∗
𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) < 0. 

 Therefore, to show the non-monotonicity of the variance, it is sufficient to show 

𝑑

𝑑𝑆∗ 𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) > 0 for some 𝑆∗. If 𝜓(0) < 𝐸[𝜉(𝑆; 0)], we have 𝑔(0) < 0. Since 

𝑔(⋅) is continuous, there exists 𝑆̈+ ∈ 𝒮 ∩ ℝ+ such that for all 𝑆∗ ∈ (0, 𝑆̈+), 𝑔(𝑆∗) < 0, 

and 
𝑑

𝑑𝑆∗ 𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) > 0  since 𝜓(𝛿𝑆∗) − 𝜓(𝑆∗) < 0  for 𝑆∗ > 0 . Similarly, if 

𝜓(0) >  𝐸[𝜉(𝑆; 0)] , we have 𝑔(0) > 0 , and there exists 𝑆̈− ∈ 𝒮 ∩ ℝ−  such that for 

𝑆∗ ∈ (𝑆̈−, 0) , 𝑔(𝑆∗) > 0 , and 
𝑑

𝑑𝑆∗ 𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) > 0  since 𝜓(𝛿𝑆∗) − 𝜓(𝑆∗) > 0  for 

𝑆∗ < 0. ∎ 

 Note that with assumption 𝜓(0) ≤ 𝐸[𝜓(𝑆)], we can generalize Proposition 3:  

Proposition 5 

Let 𝜉(𝑆; 𝑆∗) be the (realized) effective unit of labor of a worker with skill 𝑆, given the 

threshold value 𝑆∗. Suppose that 𝜓(0) ≤ 𝐸[𝜓(𝑆)].33 Then, 

1. For 𝑆∗ > 0, 𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) is inverted U-shaped. 

2. For 𝑆∗ = 0, 
𝑑

𝑑 𝑆∗
 𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) = 0. 

3. For 𝑆∗ < 0, 
𝑑

𝑑 𝑆∗
 𝑉𝑎𝑟 (𝜉(𝑆; 𝑆∗)) < 0. 

Proof 

 

33 This assumption holds when ability 𝑆 has mean-zero distribution and 𝜓(⋅) is convex by 

Jensen’s inequality. 
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First, Proposition 5.2 is trivial. To show Proposition 5.3, note that by the definition of 

𝜉(⋅) , we have 𝐸[𝜉(𝑆; inf 𝒮)] =  𝐸[𝜓(𝑆)] , and so, the assumption of the proposition 

implies that for 𝑆∗ < 0, 

𝜓(𝛿𝑆∗) + 𝜓(𝑆∗)

2
< 𝜓(0) ≤ 𝐸[𝜓(𝑆)] = 𝐸[𝜉(𝑆; inf 𝒮)] < 𝐸[𝜉(𝑆; 𝑆∗)], 

where the last inequality follows since 𝐸[𝜉(𝑆; 𝑆∗)] is inverted U-shaped with peak 𝑆∗ =

0 . Therefore, for 𝑆∗ < 0 , we have 𝑔(𝑆∗) < 0 , and thus, 
𝑑

𝑑𝑆∗
𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) < 0.  To 

show Proposition 5.1, consider the case with 𝑆∗ > 0 . By the definition of 𝜉(⋅) , 

𝐸[𝜉(𝑆; inf 𝒮)] =  𝐸[𝜓(𝑆)]  and 𝐸[𝜉(𝑆; sup 𝒮)] =  𝐸[𝜓(𝛿𝑆)] . The assumption implies 

that 𝜓(0) ≤ 𝐸[𝜓(𝑆)] = 𝐸[𝜉(𝑆; inf 𝒮)] < 𝐸[𝜉(𝑆; 0)] , so that 𝑔(0) < 0 . Furthermore, 

since 𝜓(𝑆)  is monotonically increasing, we have 𝐸[𝜉(𝑆; sup 𝒮)] =  𝐸[𝜓(𝛿𝑆)] <

sup
𝑆∗∈𝒮

𝜓(𝛿𝑆∗) ≤  sup
𝑆∗∈𝒮

𝜓(𝛿𝑆∗)+𝜓(𝑆∗)

2
, so that 𝑔(sup 𝒮) > 0. Hence, 𝑔(0) < 0 < 𝑔(sup 𝒮). 

Since 𝑔(𝑆∗) is continuous and monotonically increasing for 𝑆∗ > 0, there exists 𝑆̃ ∈

 𝒮 ∩ ℝ+ such that 𝑔(𝑆∗) < 0 for 0 < 𝑆∗ <  𝑆̃, 𝑔(𝑆∗) = 0 for 𝑆∗ = 0, and 𝑔(𝑆∗) >

0 for 𝑆∗ > 0. Therefore, given that 𝜓(𝛿𝑆∗) − 𝜓(𝑆∗) < 0 for 𝑆∗ > 0, we observe that 

𝑉𝑎𝑟(𝜉(𝑆; 𝑆∗)) is inverted U-shaped for 𝑆∗ > 0 with peak 𝑆∗ =  𝑆̃. ∎ 

 

E Model Simulation 

Our model implies that technological change influences wage inequality through two 

primary channels: the price of labor efficiency 𝑤 = 𝑤𝐶/𝑤𝑅, and the variance of labor 

efficiency, 𝑉𝑎𝑟 (𝜉) , induced by sorting. In our statistical model, these parameters 

correspond to 𝑝𝑡 and 𝜎𝛼𝑐
2 . 

In Corollary 1, we show that the sorting channel generates a non-monotonic effect 

on the variance of labor efficiency 𝑉𝑎𝑟 (𝜉). In contrast, the price channel, captured in 

the Roy model as the relative price of complex to routine tasks 𝑤𝐶/𝑤𝑅 , responds 

monotonically to technological change. Specifically, 𝑤𝐶/𝑤𝑅 increases in the complex 

task-augmenting productivity parameter 𝜔 , thereby raising the returns to performing 

complex tasks.  

The individual effects on 𝑤𝐶 and 𝑤𝑅, and thus on the overall variance of total 
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wages 𝑉𝑎𝑟(𝑤𝜉)34, depend non-trivially on two key functional form assumptions: First, 

the elasticity of substitution between complex and routine tasks, 
1

1−𝜑
 , determines the 

extent to which firms can substitute across tasks types. Second, the task-specific ability-

scaling parameter 𝛿  governs the degree to which innate ability translates into 

productivity in the routine task sector. 

In our empirical analysis below, we observe the equivalent of Δ𝑉𝑎𝑟(𝑤𝜉), i.e., the 

change in the variance of the combined effect of productivity and price. To assess how its 

relationship with initial complexity (capturing the initial technology level of an 

occupation) and changes in complexity reflects the implications of our model, as stated 

in Propositions 2 and 3 and Corollary 1, we rely on simulations. Specifically, to 

distinguish whether changes in 𝑉𝑎𝑟(𝑤𝜉) associated with higher initial complexity or 

larger increases in complexity are driven by price increases or sorting, we simulate a 

baseline scenario in which complex and routine tasks are gross complements 
1

1−𝜑
=

0.5 (
1

1−𝜑
= 0.5) and ability plays only a limited role in routine task productivity (𝛿 =

0.1). 

Figure A6 presents the simulation results. Panel (a) shows that a decline in 𝑆∗, 

induced by technological progress (increasing 𝜔 ), consistently raises the variance of 

wages 𝑉𝑎𝑟(𝑤𝜉) through the combined effect of price and sorting channels. Panel (b), 

however, shows that the slope of this increase is non-monotonic and flattens at 

intermediate levels of 𝜔. This pattern reflects the sorting channel, whose impact weakens 

in the mid-range of 𝜔. Thus, while the positive, monotonic price effect dominates overall, 

the non-monotonic sorting effect modulates the rate at which inequality grows within 

occupations. 

In most empirically relevant settings, technological change increases wage 

variance through both channels. The relative importance and direction of the sorting effect, 

however, can depend on the task structure and ability-technology interaction within 

 

34 The variance is the weighted sum of the overall renumeration of all workers: 𝑉𝑎𝑟(𝑤𝜉) =

𝑉𝑎𝑟(∑ 𝑤𝑐 ⋅ 𝜉𝑖𝑖𝜖𝐶 + ∑ 𝑤𝑟 ⋅ 𝜉𝑖𝑖𝜖𝑅 ). 
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occupations.  

We next examine the sensitivity of our Roy model simulation to alternative values 

of the two key parameters: the elasticity of substitution between complex and routine 

tasks, 
1

1−𝜑
  , and the degree to which ability maps into productivity in routine tasks, 𝛿. 

Our baseline assumes 𝛿 = 0.1  and 
1

1−𝜑
= 0.5  implying that ability plays a minimal 

role in routine tasks and that complex and routine tasks are relative complements. 

Figure A7 presents the simulated relationship between the level of technology 𝜔 

and the variance of wages 𝑉𝑎𝑟(𝑤𝜉), where wages are the product of task price and labor 

efficiency. Each panel (a) through (f) corresponds to a different value of the elasticity of 

substitution 
1

1−𝜑
, and within each panel, the curves represent varying values of 𝛿.  

Across most relevant parameter combinations, wage variance increases 

monotonically with technology 𝜔. Exceptions occur at low levels of 𝜔 when is 𝛿 high. 

These cases are inconsistent with the conceptual foundation of our model, which assumes 

that ability has limited influence on productivity in routine tasks. 

For example, in our baseline scenario with 
1

1−𝜑
= 0.5 , the variance of wages 

exhibits a negative slope for 𝛿 ≥ 0.6, a scenario in which ability contributes more and 

more equally to productivity in both tasks. This violates the core logic of our model, 

which rests on differential relevance of ability across tasks. 

A monotonic increase in wage variance with technological progress emerges as 

long as at least one of the following conditions is met: (i) ability plays a relative limited 

role in routine task productivity, (ii) routine and complex tasks are not highly substitutable, 

or (iii) the empirically relevant range of technological change avoids extreme values of 

𝜔 

Next, we examine the slope of the wage variance with respect to 𝜔. In Figure A8, 

we plot the first derivative of the variance of wages 𝑉𝑎𝑟(𝑤𝜉) with respect to 𝜔 . This 

derivative captures the rate of change in wage variance at different levels of technological 

progress. A positive derivative indicates that technological change increases wage 

inequality at that level 𝜔. 

For our baseline case with 𝛿 = 0.1  and 
1

1−𝜑
= 0.5 , the slope is positive 
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throughout but exhibits a U-shaped pattern: the rate of increase in wage variance is lowest 

at intermediate levels of 𝜔. This aligns with the mechanism identified in our model—

non-monotonic sorting into tasks causes realized labor efficiency variance 𝑉𝑎𝑟(𝜉) to 

flatten at medium technology levels, slowing the overall growth in wage inequality 

despite the monotonic price effect. 

We observe that the U-shaped pattern holds also for other relatively low values of 

𝛿 reinforcing that sorting effects dominate when ability is largely irrelevant in routine 

tasks35.  

Similarly, the U-shape holds for low values of 𝛿 in cases where complex and 

routine tasks are stronger complements—i.e., when the elasticity of substitution is at 0.1 

or 0.001. As routine and complex tasks become increasingly substitutable, the U-shape 

flattens and eventually disappears, as task-specific sorting loses influence over the task 

price effect. 

Taken together, a U-shaped pattern in the slope of wage variance emerges when 

(i) ability plays a relative limited role in routine task productivity, and (ii) routine and 

complex tasks are not highly substitutable. 

 

 

F Construction of Residualized Measures of Complexity 

and Complexity Change for Graphical Analysis 

To provide nonparametric evidence on the link between the level of complexity 

in 1986, complexity change since 1986 and within-occupotional inequality, we 

residualize the variables against relevant controls. The procedure is carried out at the 

occupation–year level after collapsing the SIAB–BIBB matched data. We distinguish two 

cases: (i) Residualized Baseline complexity and (ii) Residualized Complexity change. 

We regress log within-occupation inequality and baseline complexity (1986) 

 

35 The strength of the U-shaped pattern is however not strictly monotonically increasing with lower 

𝜔 for all parameter choices of the elasticity of substitution.  
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separately on changes in complexity between 1986 and 2006 and on baseline inequality 

in 1986: 

 

(1)   ln ( 𝑢̂𝑖,𝑡,𝑗
2 ) = 𝛾0 + 𝛾1 ⋅ ∆𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦[𝑡 − 1986]𝑗,𝑡 + 𝛾2 ⋅ 𝜎𝑗,1986

2 + 𝜖𝑖,𝑗,𝑡 

(2)    ln (𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑗,𝑡) = 𝜉0 + 𝜉1 ⋅ ∆𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦[𝑡 − 1986]𝑗,𝑡 + 𝜉2 ⋅ 𝜎𝑗,1986
2 + 𝜂𝑖,𝑗,𝑡 

 

Residuals from these equations represent the components of inequality and 

baseline complexity orthogonal to both subsequent complexity growth and initial 

inequality. 

 

For the Residualized Complexity change measure we regress log within-

occupation inequality and changes in complexity on baseline complexity (1986) and 

baseline inequality: 

(1)    ln (𝑢̂𝑖,𝑡,𝑗
2 ) = 𝜃0 + 𝜃1 ⋅ 𝑐𝑗,1986 + 𝜃2 ⋅ (𝑐𝑗,1986)

2
+ 𝜃3 ⋅ 𝜎𝑗,1986

2 + 𝜅𝑖,𝑗,𝑡 

(2)    ln (∆𝑐𝑗,𝑡,1986) = 𝜏0 + 𝜏1 ⋅ 𝑐𝑗,1986 + 𝜏2 ⋅ (𝑐𝑗,1986)
2

+ 𝜏3 ⋅ 𝜎𝑗,1986
2 + 𝜑𝑖,𝑗,𝑡 

 

Residuals from these equations represent the components of inequality and 

complexity growth orthogonal to initial conditions. 

For visualization, we sort occupations into equal-sized quantile bins of the 

relevant residualized complexity measure, compute the weighted mean of residualized 

inequality and complexity within each bin, and use the number of individuals in each 

occupation–year cell as weights. We exclude bins with fewer than 20 observations and, e 

exclude bins with extreme values of residualized complexity change (mean values above 

0.1. We then plot the bin means against each other, overlaying a lowess smoother with 

bandwidth 0.8. 

 

 

G Parameter Effects on Shorrocks Income Mobility 

In this subsection we derive how the different components of our earnings process 
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contribute to short-term and long-term variance, and thus to the Shorrocks mobility 

index.36 For simplicity, we abstract here from the influence of the observables and the 

employment margin on the wage and only consider the effect of our income process 

parameters on the residual wage 𝑦̂𝑡. 

 

𝑦̂𝑡 = 𝑝𝑡𝛼𝑖𝑐 + 𝑧𝑖𝑎𝑡 + 𝜖𝑖𝑡, (1𝑎) 

 𝑧𝑖𝑎𝑡 = 𝜌𝑡𝑧𝑖,𝑎−1,𝑡−1 +  𝜂𝑖𝑡 , (2𝑎) 

 

The environment for our analysis is static: all structural parameters and prices are 

fixed within the observed window of length 𝑇 . We will consider the effect of level 

changes in single parameters for the entire holding the other parameters constant. As a 

result, we define 𝑝𝑡𝛼𝑖𝑐 = 𝑝𝛼 , 𝜖𝑖𝑡 = 𝜖  and 𝑧𝑖𝑎𝑡 = 𝑧𝑎 for all 𝑡. 

 

Define the short-term variance of residual wages as 

𝑆 =
1

𝑇
∑ 𝑉𝑎𝑟(𝑦̂𝑡)

𝑇

𝑡=1
 

and the long-term variance as 

𝐿 =
1

𝑇
∑ 𝑉𝑎𝑟(𝑦̂𝑡)

𝑇

𝑡=1
 

The Shorrocks mobility index, with variance as the inequality measures, is then 

𝑀 = 1 −
𝐿

𝑆
 

A lower value of 𝐿/𝑆 implies higher earnings mobility, because less of short-term 

dispersion translates into persistent, long-term inequality. Because the permanent effect 

𝑝𝑡𝛼𝑖𝑐 , the persistent shock 𝑧𝑖𝑎𝑡  and the transitory shock 𝜖𝑖𝑡  are independent we can 

write short- and long-term inequality as 

 

𝑆 =
1

𝑇
∑ 𝑉𝑎𝑟(𝑝𝑡𝛼𝑖𝑐)

𝑇

𝑡=1
+

1

𝑇
∑ 𝑉𝑎𝑟(𝑧𝑖𝑎𝑡)

𝑇

𝑡=1
+

1

𝑇
∑ 𝑉𝑎𝑟(𝜖𝑖𝑡)

𝑇

𝑡=1
= 𝑆𝐹𝐸 + 𝑆𝑃 + 𝑆𝑇 

 

36 We abstract here from the influence of the observables and the employment margin on the wage 

and only model the effect of our income process parameters on the residual wage 
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and 

𝐿 = 𝑉𝑎𝑟 (
1

𝑇
∑ 𝑝𝑡𝛼𝑖𝑐

𝑇
𝑡=1 ) + 𝑉𝑎𝑟 (

1

𝑇
∑ 𝑧𝑖𝑎𝑡

𝑇
𝑡=1 ) + 𝑉𝑎𝑟 (

1

𝑇
∑ 𝜖𝑖𝑡

𝑇
𝑡=1 ) = 𝐿𝐹𝐸 + 𝐿𝑃 + 𝐿𝑇  

 

Lemma G0: The short term-variance of each sub-component of our income process is 

always lower or equal than the long-term variance 

 

Proof: Because the fixed effect is constant over time, it contributes equally to both short- 

and long-term variance: 

 

𝑆𝐹𝐸 =
1

𝑇
∑ 𝑉𝑎𝑟(𝛼𝑝)

𝑇

𝑡=1
=

1

𝑇
∑ 𝑝2𝜎𝛼

2
𝑇

𝑡=1
= 𝑝2𝜎𝛼

2 

𝐿𝐹𝐸 = 𝑉𝑎𝑟 (
1

𝑇
∑ 𝛼𝑝

𝑇

𝑡=1
) = 𝑉𝑎𝑟(𝛼𝑝) = 𝑝2𝜎𝛼

2 

 

Therefore 𝑆𝐹𝐸 = 𝐿𝐹𝐸 

 

Because the transitory component is independent across time 𝑡, positive and negative 

shocks are more likely offset each other, this effect is stronger the longer the time-horizon 

𝑇.   

 

𝑆𝑇 =
1

𝑇
∑ 𝑉𝑎𝑟(𝜖𝑡)

𝑇

𝑡=1
= 𝜎𝜖

2 

𝑆𝑇 = 𝑉𝑎𝑟 (
1

𝑇
∑ 𝜖𝑡

𝑇

𝑡=1
) =

1

𝑇2
∑ 𝑉𝑎𝑟(𝜖𝑡)

𝑇

𝑡=1
=

𝜎𝜖
2

𝑇
 

So 𝑆𝑇 ≥ 𝑆𝑇 

 

In the stationary distribution with persistency 𝜌 ≤ 1 the variance of the persistent shock 

is 

𝑉𝑎𝑟(𝑧𝑎) =
𝜎𝜂

2

1 − 𝜌2
 

And the autocovariance between two periods 𝑖, 𝑗 is  

𝐶𝑜𝑣(𝑧𝑖, 𝑧𝑗) = 𝜎𝑧
2𝜌|𝑖−𝑗| 
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The short-term variance is the average of the one-year variances within a window of 

length 𝑇 

 

𝑆𝑃 =
1

𝑇
∑ 𝑉𝑎𝑟(𝑧𝑎) =

𝑇

𝑡=1

𝜎𝜂
2

1 − 𝜌2
 

Thus, the contribution of the persistent component to the short-term variance increases in 

its variance and increases in the persistency parameter. 

 

 

𝐿𝑃 = 𝑉𝑎𝑟 (
1

𝑇
∑ 𝑢𝑡

𝑇

𝑡=1
) =

1

𝑇2
∑ ∑ 𝐶𝑜𝑣(𝑢𝑖 , 𝑢𝑗)

𝑇

𝑖=1

𝑇

𝑖=1
 

 

Substitute 𝐶𝑜𝑣(𝑢𝑖 , 𝑢𝑗) = 𝜎𝑧
2𝜌|𝑖−𝑗| 

 

𝐿𝑃 =
𝜎𝑧

2

𝑇2
[𝑇 + 2 ∑ (𝑇 − 𝑘)𝜌𝑘

𝑇−1

𝑘=1
] 

Because 𝜎𝑢
2 =

𝜎𝜂
2

1−𝜌2
, we can rewrite this as 

𝐿𝑃 =
𝜎𝜂

2

1 − 𝜌2
𝑔(𝜌, 𝑇) 

With 𝑔(𝜌, 𝑇) =
1

𝑇2
[1 + 2 ∑ (𝑇 − 𝑘)𝜌𝑘𝑇−1

𝑘=1 ] 

The term 𝑔(𝜌, 𝑇) now captures how averaging across years attenuates the variance.  

Because 0 < 𝜌 < 1,  

1

𝑇
< 𝑔(𝜌, 𝑇) < 1 

Therefore 

𝐿𝑃 = 𝑆𝑃 𝑔(𝜌, 𝑇) 

And thus 𝐿𝑃 < 𝑆𝑃 

Intuitively: with positive serial correlation, 𝑢𝑡  moves slowly, so when we average 

earnings over time, the ups and downs partly cancel. The stronger the persistence the 

smaller the attenuation. 
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Proposition G1: An increase in the variance of the FE 𝑝2𝜎𝛼
2, that is either the variance 

of the individual productivity component 𝛼 or its price, 𝑝, decreases mobility M 

 

Proof:  

𝐿

𝑆
=

𝑝2𝜎𝛼𝑐
2 + 𝐿𝑃 + 𝐿𝑇

𝑝2𝜎𝛼𝑐
2 + 𝑆𝑃 + 𝑆𝑇

 

 

Differentiation with respect to 𝑝2𝜎𝛼
2 yields  

𝜕(
𝐿
𝑆)

𝜕𝑝2𝜎𝛼
2

=
𝐿𝑃 + 𝐿𝑇 − 𝑆𝑃 + 𝑆𝑇

(𝑝2𝜎𝛼
2𝑆𝑃 + 𝑆𝑇)2

 

From Lemma G0 we have 𝐿𝑃 + 𝐿𝑇 < 𝑆𝑃 + 𝑆𝑇, and therefore the numerator is negative, 

which means the fraction 
𝐿

𝑆
 increases toward 1 as 𝑝2𝜎𝛼𝑐

2  rises (because L grows faster 

than S by the same fixed amount, narrowing their difference). The fixed component enters 

both the long- and short-term variance equally — it is not averaged out like the shocks. 

When we increase its share of the total variance, we add proportionally to both L and S, 

but we also reduce the relative weight of the attenuated terms that create mobility (the 

difference between S and L). As a result, L and S become more similar, the ratio 
𝐿

𝑆
 rises 

toward 1, and mobility 𝑀 = 1 −
𝐿

𝑆
 declines. ∎ 

 

Proposition G2: An increase in the variance of the transitory shock 𝜎𝜖
2 increases income 

mobility M 

Proof: Lemma G0 showed that 

𝑆𝑇 =
1

𝑇
∑ 𝑉𝑎𝑟(𝜖𝑡)

𝑇

𝑡=1
= 𝜎𝜖

2 

𝐿𝑇 = 𝑉𝑎𝑟 (
1

𝑇
∑ 𝜖𝑡

𝑇

𝑡=1
) =

1

𝑇2
∑ 𝑉𝑎𝑟(𝜖𝑡)

𝑇

𝑡=1
=

𝜎𝜖
2

𝑇
 

 

Therefore 

𝐿

𝑆
=

𝐿𝐹𝐸 + 𝐿𝑃 +
𝜎𝜖

2

𝑇
𝑆𝐹𝐸 + 𝑆𝑃 + 𝜎𝜖

2
 



77 

 

 

For tractability, we define 𝐴 = 𝐿𝐹𝐸 + 𝐿𝑃 and 𝐵 = 𝑆𝐹𝐸 + 𝑆𝑃 and rewrite 

𝐿

𝑆
=

𝐴 +
𝜎𝜖

2

𝑇
𝐵 + 𝜎𝜖

2
 

 

Differentiation with respect to 𝜎𝜖
2 yields  

 

𝜕(
𝐿
𝑆)

𝜕𝜎𝜖
2

=
(

1
𝑇) (𝐵 + 𝜎𝜖

2) − (𝐴 +
𝜎𝜖

2

𝑇 )

(𝐵 + 𝜎𝜖
2)2

=

𝐵
𝑇 − 𝐴

(𝐵 + 𝜎𝜖
2)2

 

The denominator is always positive. The nominator can be rewritten as 

 

𝐵

𝑇
− 𝐴 =

𝑆𝐹𝐸 + 𝑆𝑃

𝑇
− 𝐿𝐹𝐸 − 𝐿𝑃 

Because 𝑆𝐹𝐸 = 𝐿𝐹𝐸 and 𝐿𝑃 = 𝑆𝑃 𝑔(𝜌, 𝑇) 

 

𝑆𝐹𝐸 + 𝑆𝑃

𝑇
− 𝐿𝐹𝐸 + 𝐿𝑃 = −

𝑇 − 1

𝑇
𝑝2𝜎𝛼

2 +
𝑆𝑝−𝑇 𝑆𝑃 𝑔(𝜌, 𝑇)

𝑇
 

 

= −
𝑇 − 1

𝑇
𝑝2𝜎𝛼

2 +
1

𝑇
𝑆𝑝(1 − 𝑇 𝑔(𝜌, 𝑇)) 

= −
𝑇 − 1

𝑇
𝑝2𝜎𝛼

2 +
1

𝑇
𝑆𝑝(1 − 𝑇 𝑔(𝜌, 𝑇)) 

From  
1

𝑇
< 𝑔(𝜌, 𝑇) < 1  follows that 𝑇 𝑔(𝜌, 𝑇) > 1  and therefore this expression is 

negative. 

 

As a result  

𝜕(
𝐿
𝑆)

𝜕𝜎𝜖
2

< 0 

 

Therefore, an increase in the transitory variance lowers the ratio 
𝐿

𝑆
 , which means the 

Shorrocks mobility 𝑀 = 1 −
𝐿

𝑆
 increases. The intuition for this result is that the transitory 



78 

 

shock inflates the short-term variance by a factor of 1 but the long-term variance only by 

1

𝑇
, so as its weight grows, 𝐿/𝑆 declines.∎ 

 

Proposition G3: An increase in the variance of the persistent component 𝜎𝜂
2 increases 

mobility if variance of the FE is sufficiently large. 

Holding 𝜌 fixed, 𝑆𝑃 and 𝐿𝑃 are both proportional to 𝜎𝜂
2, but 𝐿𝑃 is smaller by 

the factor 𝑔(𝜌, 𝑇). Differentiating 𝐿/𝑆 with respect to 𝜎𝜂
2 gives  

 

𝐿𝑃 = 

 

𝜕 (
𝐿
𝑆)

𝜕𝜎𝜂
2

=

𝑔(𝜌, 𝑇)
1 − 𝜌2 𝑆 − (

1
1 − 𝜌2) 𝐿

𝑆2
=

𝑔(𝜌, 𝑇)𝑆 − 𝐿

(1 − 𝜌2)𝑆2
∝ 𝑔(𝜌, 𝑇)𝑆 − 𝐿 

 

as the denominator is always positive. 

We can now substitute the transitory and permanent shocks into 𝑆  and 𝐿  in the 

nominator 

𝑔(𝜌, 𝑇)𝑆 − 𝐿 = 𝑔(𝜌, 𝑇)(𝑆𝐹𝐸 + 𝑆𝑃 + 𝑆𝑇) − 𝐿𝐹𝐸 − 𝐿𝑃 − 𝐿𝑇 

 

= 𝑔(𝜌, 𝑇)(𝑆𝐹𝐸 + 𝑆𝑃 + 𝑆𝑇) − 𝐿𝐹𝐸 − 𝐿𝑃 − 𝐿𝑇 

(𝑔(𝜌, 𝑇) − 1)𝑝2𝜎𝛼
2 + (𝑔(𝜌, 𝑇)𝑆𝑃 − 𝐿𝑃) + (𝑔(𝜌, 𝑇) −

1

𝑇
) 𝜎𝜖

2 

Because 𝑔(𝜌, 𝑇)𝑆𝑃 = 𝐿𝑃 this simplifies to 

(𝑔(𝜌, 𝑇) − 1)𝑝2𝜎𝛼
2 + (𝑔(𝜌, 𝑇) −

1

𝑇
) 𝜎𝜖

2 

 

The effect is negative if  

𝜕 (
𝐿
𝑆)

𝜕𝜎𝜂
2

< 0 < −> (1 − 𝑔(𝜌, 𝑇))𝑝2𝜎𝛼
2 > (𝑔(𝜌, 𝑇) −

1

𝑇
) 𝜎𝜖

2 

This condition can be rewritten as  



79 

 

𝑝2𝜎𝛼
2

𝜎𝜖
2

>
𝑔(𝜌, 𝑇) −

1
𝑇

1 − 𝑔(𝜌, 𝑇)
 

For any 𝑇 ≥ 2 and 𝜌 < 1, 𝑔𝜖 (
1

𝑇
, 1) so the right hand side is finite and positive. 

If the variance of the permanent component is sufficiently larger than the transitory 

variance, than this holds and an increasing 𝜎𝜂
2 lowers 

𝐿

𝑆
 and raises mobility. 

If the transitory variance is extraordinarily large relative to 𝑝2𝜎𝛼
2, this sign can flip. 

Also if 𝜌 → 1, 𝑔(𝜌, 𝑇) → 1 and 
𝜕(

𝐿

𝑆
)

𝜕𝜎𝜂
2 → 0 so it has little effect. ∎ 
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H Figures 

 

 

Figure A1 p90-p10 ratio of lifecycle earnings 

 

Note: This graph shows the p90p10 log ratio of our measure of lifecycle earnings calculated as the total earnings from 

age 25 to 34. 

Source: Own calculations based on IAB data 
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Figure A2 Non-employment rate across the potential wage distribution 

 

Note: The figure shows the rate of non-employment across potential wage deciles in our simulated data across the 

calendar years 1995, 2005 and 2015.  

Source: Own calculations based on IAB data  
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Figure A3 Selection and No Selection Counterfactual Scenario 

 
Note: The figure shows the probability of non-employment for an aggregate 10% non-unemployment rate under the 

counterfactual Selection and No Selection Scenario across the Potential Wage Distribution. In the Selection Scenario, 

the bottom wage decile has a 100% probability of being unemployed while the rest of the wage distribution has a 0% 

probability of being unemployed. In the No Selection Scenario, the probability of non-employment is 10% across the 

distribution. 

Source: Own illustration 
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Figure A4 Selection and No Selection Counterfactual Simulation 

 
Note: The figure shows the results of the counterfactual decomposition under the full model, the Selection scenario 

and the No Selection Scenario.  

Source: Own calculations based on IAB data 
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Figure A5 Simulation of the Roy Model – Variance of Effective Unit of Labor 

 
 

Note: This graph shows the simulated variance of the effective unit of labor across different values of 𝑆∗. To simulate 

the model we draw skill 𝑆~𝑁(0,1) for 100,000 individuals and set 𝛿 = 0.1. Given the value of 𝑆∗, the worker with 

skill 𝑆 is assigned the effective unit of labor 𝜉 = 𝑒𝑥𝑝(𝑆) if 𝑆 > 𝑆∗ and 𝜉 = 𝑒𝑥𝑝(𝛿𝑆) otherwise. We then compute 

𝑉𝑎𝑟(𝜉) for different levels of 𝑆∗. 

Source: Own illustration 
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Figure A6 Simulation of the Roy Model – Variance of Wage 

 

(a)  

Level of Wage 𝑽𝒂𝒓(𝒘 ⋅ 𝝃) 

 

(b)  

First derivative of the Variance of Wage 𝑽𝒂𝒓(𝒘 ⋅ 𝝃) with respect to the level of technology 𝝎 

   

Note: To simulate the model we draw skill 𝑆~𝑁(0,1) for 100,000 individuals and set 𝛿 = 0.1 and 
1

1−𝜑
= 0.5. Given 

the value of 𝑆∗ , the worker with skill 𝑆  is assigned the effective unit of labor 𝜉 = 𝑒𝑥𝑝(𝑆)  if 𝑆 > 𝑆∗  and 𝜉 =
𝑒𝑥𝑝(𝛿𝑆) otherwise.  

Source: Own calculations based on IAB data 
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Figure A7 Simulation of Roy Model – Choice of Parameters 

Variance of Wage 

 

  

(a) 
𝟏

𝟏−𝝋
= 𝟎. 𝟎𝟎𝟏 (b) 

𝟏

𝟏−𝝋
= 𝟎. 𝟏 

  

 (c) 
𝟏

𝟏−𝝋
= 𝟎. 𝟓 (d) 

𝟏

𝟏−𝝋
= 𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 

  

(e) 
𝟏

𝟏−𝝋
= 𝟏. 𝟓 (f) 

𝟏

𝟏−𝝋
= 𝟒 

 

Note: To simulate the model we draw skill 𝑆~𝑁(0,1)  for 100,000 individuals and set the parameter 𝛿  and the 

elasticity of substitution 
1

1−𝜑
 accordingly. Given the value of 𝑆∗, the worker with skill 𝑆 is assigned the effective 

unit of labor 𝜉 = 𝑒𝑥𝑝(𝑆) if 𝑆 > 𝑆∗ and 𝜉 = 𝑒𝑥𝑝(𝛿𝑆) otherwise.  

Source: Own calculations based on IAB data 
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Figure A8 Simulation of Roy Model – Choice of Parameters 

Derivative of Variance of Wage 

 

  

(a) 
𝟏

𝟏−𝝋
= 𝟎. 𝟎𝟎𝟏 (b) 

𝟏

𝟏−𝝋
= 𝟎. 𝟏 

  

 (c) 
𝟏

𝟏−𝝋
= 𝟎. 𝟓 (d) 

𝟏

𝟏−𝝋
= 𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 

  

(e) 
𝟏

𝟏−𝝋
= 𝟏. 𝟓 (f) 

𝟏

𝟏−𝝋
= 𝟒 

 

Note: To simulate the model we draw skill 𝑆~𝑁(0,1) for 100,000 individuals. Given the value of 𝑆∗, the worker with 

skill 𝑆 is assigned the effective unit of labor 𝜉 = 𝑒𝑥𝑝(𝑆) if 𝑆 > 𝑆∗ and 𝜉 = 𝑒𝑥𝑝(𝛿𝑆) otherwise.  

Source: Own calculations based on IAB data 
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Figure A9  

 
 

Note: The figure shows a two-step decomposition of the variance of log wages at age 25 by birth cohort. The first step 

separates between- and within-industry variation. The second step further decomposes the within-industry component 

into between-occupation and residual within-occupation variation. 

Source: Own illustration 
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I Tables 

 

 
Table A1 Overview Counterfactual Scenarios 

 
Scenario Free Parameters  Parameters fixed at estimated value of 

𝑐 = 1955 and 𝑡 = 1980 

CF1 𝜇𝑒𝑎𝑡  𝜎𝛼𝑡
2 , 𝑝𝑡, 𝜎𝜂𝑡

2 , 𝜌
𝑡
, 𝜎𝜖𝑡

2 , Employment (𝑞, 𝜆) 

CF2 𝜇𝑒𝑎𝑡, 𝜎𝛼𝑡
2  𝑝𝑡, 𝜎𝜂𝑡

2 , 𝜌
𝑡
, 𝜎𝜖𝑡

2 , Employment (𝑞, 𝜆) 

CF3 𝜇𝑒𝑎𝑡, 𝑝𝑡 𝜎𝛼𝑡
2 , 𝜎𝜂𝑡

2 , 𝜌
𝑡
, 𝜎𝜖𝑡

2 , Employment (𝑞, 𝜆) 

CF4 𝜇𝑒𝑎𝑡, 𝜎𝛼𝑡
2 , 𝑝𝑡 𝜎𝜂𝑡

2 , 𝜌
𝑡
, 𝜎𝜖𝑡

2 , Employment (𝑞, 𝜆) 

CF5 𝜇𝑒𝑎𝑡, 𝜎𝛼𝑡
2 , 𝑝𝑡, 𝜎𝜂𝑡

2 , 𝜌
𝑡
 𝜎𝜖𝑡

2 , Employment (𝑞, 𝜆) 

CF6 𝜇𝑒𝑎𝑡, 𝜎𝛼𝑡
2 , 𝑝𝑡, 𝜎𝜂𝑡

2 , 𝜌
𝑡
, 𝜎𝜖𝑡

2  Employment (𝑞, 𝜆) 

CF7 (Full Model) 
𝜇𝑒𝑎𝑡, 𝜎𝛼𝑡

2 , 𝑝𝑡, 𝜎𝜂𝑡
2 , 𝜌

𝑡
, 𝜎𝜖𝑡

2 , 

Employment (𝑞, 𝜆) 

 

 
Note: This table gives an overview of the different counterfactual scenarios described in Section 4. For each 

counterfactual scenario we allow the free parameters to vary over time or for the case of 𝜎𝛼𝑐
2  across cohort, while the 

other parameters are fixed at the level of year 𝑡 = 1980 or cohort 𝑐 = 1955. 
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Table A2 Regression results wage on complexity 

 
 

Dependant Variable: Log 

Monthly Wage 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

Complexity 0.170*** 

(0.013) 

0.069*** 

(0.014) 

0.072*** 

(0.014) 

0.052*** 

(0.014) 

Age   0.044*** 

(0.008) 

0.041*** 

(0.008) 

Age2   -0.000*** 

(0.000) 

-0.000*** 

(0.000) 

Supervisor    0.170*** 

(0.027) 

Female    -0.184*** 

(0.031) 

Constant 8.363*** 

(0.013) 

8.563*** 

(0.206) 

7.320*** 

(0.261) 

7.386*** 

(0.261) 

 

Occupation Controls  x x x 

𝑅2 0.015 0.063 0.078 0.085 

Number of Observations 

 

11,716 11,716 11,716 11,716 

 
Note: This table shows the results of OLS regressions of monthly log wages in 2006 on our measure of task complexity 

(standardized), age and supervisor status and 3-digit occupation controls. Significance levels are denoted by *10%, 

**5% and ***1%. 

Source: Own calculations based on BIBB data 

  



91 

 

Table A3 Examples of Routine and Complex Tasks within Occupations 

 
Occupation Routine Task Complex Task 

Car Mechanic Change tires, oil, battery Repair engine damage 

Bank Clerk Open checking account Advise on financial situations 

Gardener Mow the lawn Select draught-resistant plants 

Journalist Rewrite press releases Conduct investigative research 

Warehouse Assistant Move boxes Deal with system failures 

 
Note: This table shows examples of routine and complex tasks within occupations 
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Table A4 Occupations with the highest and lowest change in complexity 

 
Highest Change Lowest Change 

Goods inspectors, sorters Chemists, chemical engineers, physicists 

Welders, flame cutters Farmers, livestock breeders, animal caretakers 

Other assemblers Social workers, carers, pastoral assistants 

Plastics processing workers Surveying engineers, other engineers 

Turners (lathe operators) Physicians, pharmacists 

 
Note: This table shows the occupations with the lowest and highest increase in average complexity across 120 

occupations from 1986 to 2006 

Source: Own calculations based on BIBB Data 
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Table A5 Coding of complexity measures 

 

 

Dimension 

 

Question wording (translated) 

 

1986 Response categories and coding 

 

2006 Response categories and 

coding 

Non-Stipulation How often does it occur in your work 

that the execution of the work is 

stipulated to you in every detail? 

“Practically always (praktisch immer)” = 0 

“Often (häufig)” = 0 

“From time to time (immer mal wieder)” = 0.5 

“Rarely (selten)” = 1 

“Practically never (praktisch nie)” = 1 

 

“Often (häufig)” = 0 

“Sometimes (manchmal)” = 0.5 

“Rarely (selten)” = 1 

“Never (nie)” = 1 

Non-Repetitiveness And how often does it occur that one 

and the same work process is repeated 

in every detail? 

“Practically always (praktisch immer)” = 0 

“Often (häufig)” = 0 

“From time to time (immer mal wieder)” = 0.5 

“Rarely (selten)” = 1 

“Practically never (praktisch nie)” = 1 

 

“Often (häufig)” = 0 

“Sometimes (manchmal)” = 0.5 

“Rarely (selten)” = 1 

“Never (nie)” = 1 

New Tasks And how often does it occur in your 

work that you are confronted with new 

tasks in which you first have to 

familiarize yourself and work your 

way in? 

“Practically always (praktisch immer)” = 1 

“Often (häufig)” = 1 

“From time to time (immer mal wieder)” = 0.5 

“Rarely (selten)” = 0 

“Practically never (praktisch nie)” = 0 

 

“Often (häufig)” = 1 

“Sometimes (manchmal)” = 0.5 

“Rarely (selten)” = 0 

“Never (nie)” = 0 

Improving Tasks And how often does it occur in your 

work that you improve existing 

procedures or try out something new? 

“Practically always (praktisch immer)” = 1 

“Often (häufig)” =1 

“From time to time (immer mal wieder)” = 0.5 

“Rarely (selten)” = 0 

“Practically never (praktisch nie)” = 0 

 

“Often (häufig)” = 1 

“Sometimes (manchmal)” = 0.5 

“Rarely (selten)” = 0 

“Never (nie)” = 0 

    

 
Note: Description of coding of complexity sub-measures across the 1986 and 2006 BIBB survey. Question wording is 

unchanged, apart from negligible linguistic adjustments (orthographic variant: reindenken vs. hineindenken; minor 

syntactic change in word order: Arbeitsgang sich vs. sich Arbeitsgang). These do not affect interpretation. 

Source: Own illustration 

 


